122 research outputs found

    Cholinergic Stimulation Enhances Bayesian Belief Updating in the Deployment of Spatial Attention

    Get PDF
    The exact mechanisms whereby the cholinergic neurotransmitter system contributes to attentional processing remain poorly understood. Here, we applied computational modeling to psychophysical data (obtained from a spatial attention task) under a psychopharmacological challenge with the cholinesterase inhibitor galantamine (Reminyl). This allowed us to characterize the cholinergic modulation of selective attention formally, in terms of hierarchical Bayesian inference. In a placebo-controlled, within-subject, crossover design, 16 healthy human subjects performed a modified version of Posner's location-cueing task in which the proportion of validly and invalidly cued targets (percentage of cue validity, % CV) changed over time. Saccadic response speeds were used to estimate the parameters of a hierarchical Bayesian model to test whether cholinergic stimulation affected the trial-wise updating of probabilistic beliefs that underlie the allocation of attention or whether galantamine changed the mapping from those beliefs to subsequent eye movements. Behaviorally, galantamine led to a greater influence of probabilistic context (% CV) on response speed than placebo. Crucially, computational modeling suggested this effect was due to an increase in the rate of belief updating about cue validity (as opposed to the increased sensitivity of behavioral responses to those beliefs). We discuss these findings with respect to cholinergic effects on hierarchical cortical processing and in relation to the encoding of expected uncertainty or precision. \ua9 2014 the authors

    Pharmacological Fingerprints of Contextual Uncertainty

    Get PDF
    Successful interaction with the environment requires flexible updating of our beliefs about the world. By estimating the likelihood of future events, it is possible to prepare appropriate actions in advance and execute fast, accurate motor responses. According to theoretical proposals, agents track the variability arising from changing environments by computing various forms of uncertainty. Several neuromodulators have been linked to uncertainty signalling, but comprehensive empirical characterisation of their relative contributions to perceptual belief updating, and to the selection of motor responses, is lacking. Here we assess the roles of noradrenaline, acetylcholine, and dopamine within a single, unified computational framework of uncertainty. Using pharmacological interventions in a sample of 128 healthy human volunteers and a hierarchical Bayesian learning model, we characterise the influences of noradrenergic, cholinergic, and dopaminergic receptor antagonism on individual computations of uncertainty during a probabilistic serial reaction time task. We propose that noradrenaline influences learning of uncertain events arising from unexpected changes in the environment. In contrast, acetylcholine balances attribution of uncertainty to chance fluctuations within an environmental context, defined by a stable set of probabilistic associations, or to gross environmental violations following a contextual switch. Dopamine supports the use of uncertainty representations to engender fast, adaptive responses. \ua9 2016 Marshall et al

    Trial-by-Trial Changes in a Priori Informational Value of External Cues and Subjective Expectancies in Human Auditory Attention

    Get PDF
    Background: Preparatory activity based on a priori probabilities generated in previous trials and subjective expectancies would produce an attentional bias. However, preparation can be correct (valid) or incorrect (invalid) depending on the actual target stimulus. The alternation effect refers to the subjective expectancy that a target will not be repeated in the same position, causing RTs to increase if the target location is repeated. The present experiment, using the Posner’s central cue paradigm, tries to demonstrate that not only the credibility of the cue, but also the expectancy about the next position of the target are changedin a trial by trial basis. Sequences of trials were analyzed. Results: The results indicated an increase in RT benefits when sequences of two and three valid trials occurred. The analysis of errors indicated an increase in anticipatory behavior which grows as the number of valid trials is increased. On the other hand, there was also an RT benefit when a trial was preceded by trials in which the position of the target changed with respect to the current trial (alternation effect). Sequences of two alternations or two repetitions were faster than sequences of trials in which a pattern of repetition or alternation is broken. Conclusions: Taken together, these results suggest that in Posner’s central cue paradigm, and with regard to the anticipatory activity, the credibility of the external cue and of the endogenously anticipated patterns of target location are constantly updated. The results suggest that Bayesian rules are operating in the generation of anticipatory activity as

    Dissociation between the Activity of the Right Middle Frontal Gyrus and the Middle Temporal Gyrus in Processing Semantic Priming

    Get PDF
    The aim of this event-related functional magnetic resonance imaging (fMRI) study was to test whether the right middle frontal gyrus (MFG) and middle temporal gyrus (MTG) would show differential sensitivity to the effect of prime-target association strength on repetition priming. In the experimental condition (RP), the target occurred after repetitive presentation of the prime within an oddball design. In the control condition (CTR), the target followed a single presentation of the prime with equal probability of the target as in RP. To manipulate semantic overlap between the prime and the target both conditions (RP and CTR) employed either the onomatopoeia “oink” as the prime and the referent “pig” as the target (OP) or vice-versa (PO) since semantic overlap was previously shown to be greater in OP. The results showed that the left MTG was sensitive to release of adaptation while both the right MTG and MFG were sensitive to sequence regularity extraction and its verification. However, dissociated activity between OP and PO was revealed in RP only in the right MFG. Specifically, target “pig” (OP) and the physically equivalent target in CTR elicited comparable deactivations whereas target “oink” (PO) elicited less inhibited response in RP than in CTR. This interaction in the right MFG was explained by integrating these effects into a competition model between perceptual and conceptual effects in priming processing

    Tau-dependent suppression of adult neurogenesis in the stressed hippocampus

    Get PDF
    uncorrected proofStress, a well-known sculptor of brain plasticity, is shown to suppress hippocampal neurogenesis in the adult brain; yet, the underlying cellular mechanisms are poorly investigated. Previous studies have shown that chronic stress triggers hyperphosphorylation and accumulation of the cytoskeletal protein Tau, a process that may impair the cytoskeleton-regulating role (s) of this protein with impact on neuronal function. Here, we analyzed the role of Tau on stress-driven suppression of neurogenesis in the adult dentate gyrus (DG) using animals lacking Tau (Tau-knockout; Tau-KO) and wild-type (WT) littermates. Unlike WTs, Tau-KO animals exposed to chronic stress did not exhibit reduction in DG proliferating cells, neuroblasts and newborn neurons; however, newborn astrocytes were similarly decreased in both Tau-KO and WT mice. In addition, chronic stress reduced phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR)/glycogen synthase kinase-3 beta (GSK3 beta)/beta-catenin signaling, known to regulate cell survival and proliferation, in the DG of WT, but not Tau-KO, animals. These data establish Tau as a critical regulator of the cellular cascades underlying stress deficits on hippocampal neurogenesis in the adult brain.Portuguese Foundation for Science and Technology (FCT) Investigator grants (IF/01799/2013, IF/00883/2013, IF/01079/2014, respectively). This work was funded by FCT research grants 'PTDC/SAU-NMC/113934/2009' (IS), the Portuguese North Regional Operational Program (ON.2) under the National Strategic Reference Framework (QREN), through the European Regional Development Fund (FEDER), the Project Estratégico co-funded by FCT (PEst-C/SAU/LA0026/2013) and the European Regional Development Fund COMPETE (FCOMP-01-0124-FEDER-037298) as well as the project NORTE-01-0145-FEDER-000013, supported by the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER)info:eu-repo/semantics/publishedVersio

    Tau Reduction Does Not Prevent Motor Deficits in Two Mouse Models of Parkinson's Disease

    Get PDF
    Many neurodegenerative diseases are increasing in prevalence and cannot be prevented or cured. If they shared common pathogenic mechanisms, treatments targeting such mechanisms might be of benefit in multiple conditions. The tau protein has been implicated in the pathogenesis of diverse neurodegenerative disorders, including Alzheimer's disease (AD) and Parkinson's disease (PD). Tau reduction prevents cognitive deficits, behavioral abnormalities and other pathological changes in multiple AD mouse models. Here we examined whether tau reduction also prevents motor deficits and pathological alterations in two mouse models of PD, generated by unilateral striatal injection of 6-hydroxydopamine (6-OHDA) or transgene-mediated neuronal expression of human wildtype α-synuclein. Both models were evaluated on Tau+/+, Tau+/– and Tau–/– backgrounds in a variety of motor tests. Tau reduction did not prevent motor deficits caused by 6-OHDA and slightly worsened one of them. Tau reduction also did not prevent 6-OHDA-induced loss of dopaminergic terminals in the striatum. Similarly, tau reduction did not prevent motor deficits in α-synuclein transgenic mice. Our results suggest that tau has distinct roles in the pathogeneses of AD and PD and that tau reduction may not be of benefit in the latter condition

    Left dorsolateral prefrontal cortex supports context-dependent prioritisation of off-task thought

    Get PDF
    When environments lack compelling goals, humans often let their minds wander to thoughts with greater personal relevance; however, we currently do not understand how this context-dependent prioritisation process operates. Dorsolateral prefrontal cortex (DLPFC) maintains goal representations in a context-dependent manner. Here, we show this region is involved in prioritising off-task thought in an analogous way. In a whole brain analysis we established that neural activity in DLPFC is high both when ‘on-task’ under demanding conditions and ‘off-task’ in a non-demanding task. Furthermore, individuals who increase off-task thought when external demands decrease, show lower correlation between neural signals linked to external tasks and lateral regions of the DMN within DLPFC, as well as less cortical grey matter in regions sensitive to these external task relevant signals. We conclude humans prioritise daydreaming when environmental demands decrease by aligning cognition with their personal goals using DLPFC

    A genetic cause of Alzheimer disease: mechanistic insights from Down syndrome

    Get PDF
    Down syndrome, caused by an extra copy of chromosome 21, is associated with a greatly increased risk of early onset Alzheimer disease. It is thought that this risk is conferred by the presence of three copies of the gene encoding amyloid precursor protein (APP), an Alzheimer risk factor, although the possession of extra copies of other chromosome 21 genes may also play a role. Further study of the mechanisms underlying the development of Alzheimer disease in Down syndrome could provide insights into the mechanisms that cause dementia in the general population

    Modes of Aβ toxicity in Alzheimer’s disease

    Get PDF
    Alzheimer’s disease (AD) is reaching epidemic proportions, yet a cure is not yet available. While the genetic causes of the rare familial inherited forms of AD are understood, the causes of the sporadic forms of the disease are not. Histopathologically, these two forms of AD are indistinguishable: they are characterized by amyloid-β (Aβ) peptide-containing amyloid plaques and tau-containing neurofibrillary tangles. In this review we compare AD to frontotemporal dementia (FTD), a subset of which is characterized by tau deposition in the absence of overt plaques. A host of transgenic animal AD models have been established through the expression of human proteins with pathogenic mutations previously identified in familial AD and FTD. Determining how these mutant proteins cause disease in vivo should contribute to an understanding of the causes of the more frequent sporadic forms. We discuss the insight transgenic animal models have provided into Aβ and tau toxicity, also with regards to mitochondrial function and the crucial role tau plays in mediating Aβ toxicity. We also discuss the role of miRNAs in mediating the toxic effects of the Aβ peptide

    Abnormal accumulation of autophagic vesicles correlates with axonal and synaptic pathology in young Alzheimer’s mice hippocampus

    Get PDF
    Dystrophic neurites associated with amyloid plaques precede neuronal death and manifest early in Alzheimer’s disease (AD). In this work we have characterized the plaque-associated neuritic pathology in the hippocampus of young (4- to 6-month-old) PS1M146L/APP751SL mice model, as the initial degenerative process underlying functional disturbance prior to neuronal loss. Neuritic plaques accounted for almost all fibrillar deposits and an axonal origin of the dystrophies was demonstrated. The early induction of autophagy pathology was evidenced by increased protein levels of the autophagosome marker LC3 that was localized in the axonal dystrophies, and by electron microscopic identification of numerous autophagic vesicles filling and causing the axonal swellings. Early neuritic cytoskeletal defects determined by the presence of phosphorylated tau (AT8-positive) and actin–cofilin rods along with decreased levels of kinesin-1 and dynein motor proteins could be responsible for this extensive vesicle accumulation within dystrophic neurites. Although microsomal Aβ oligomers were identified, the presence of A11-immunopositive Aβ plaques also suggested a direct role of plaque-associated Aβ oligomers in defective axonal transport and disease progression. Most importantly, presynaptic terminals morphologically disrupted by abnormal autophagic vesicle buildup were identified ultrastructurally and further supported by synaptosome isolation. Finally, these early abnormalities in axonal and presynaptic structures might represent the morphological substrate of hippocampal dysfunction preceding synaptic and neuronal loss and could significantly contribute to AD pathology in the preclinical stages
    corecore