595 research outputs found
Broadscale coral disease interventions elicit efficiencies in endemic disease response
The presence and abundance of reef-building corals are crucial to the long-term existence of Caribbean coral reef ecosystems, providing both direct and indirect, local and global, ecological, economic, and social benefits. In 2014, stony coral tissue loss disease (SCTLD) was first identified in southeast Florida and remains endemic to the region, while continuing to spread throughout the Caribbean. Effective in situ intervention treatments using antibiotic paste can halt lesion progression on Montastraea cavernosa up to 90% of the time. This study investigated intervention activities over a three-year period to identify efficiencies in disease response. Since May 2019, 1,037 corals, \u3e85% of which were M. cavernosa, were treated during disease intervention dives in southeast Florida. Treated coral density, the number of treated corals per meter along a dive track, was significantly higher in the first year compared to subsequent years and displayed annual peaks in late summer each year. Season significantly influenced treatment density, leading to higher values in the wet season across all years, 2019 to 2022. Areas of highest treatment density were identified between Haulover Inlet and Government Cut near Miami and Hillsboro Inlet in northern Broward County. Areas with the highest treatment density were only identified in the first year, suggesting that broadscale interventions may have decreased disease prevalence in subsequent years. Results indicate that in endemic areas with sporadic and dynamic disease prevalence, intervention efforts should be weighted proportionally across space and time to maximize intervention efficiency. This study provides optimistic results for the potential of interventions reducing disease prevalence and supports that disease interventions are an effective coral restoration tool that can decrease the increasing burden on post hoc coral restoration
Genetic divergence among advanced lines of groundnut (Arachis hypogaea L.) under agro climatic condition of North East Hill (NEH) region
The introduction of groundnut germplasm in North East Hill (NEH) region of
India is essential to enrich genetic resources for crop improvement. The soil
under NEH region is characterized.............
Cooperative, Connected and Automated Mobility - impact analysis roadmap
This report consolidates the results of activities where citizens and organisations in 8 European countries co-created use cases and business models for the deployment of autonomous vehicles for passenger and freight transport. We then define methods to assess the systems-wide impact of those use cases and business models, including 1) the rationale for each approach, 2) data to be collected, 3) data collection methods, 4) analysis methods and expected outcomes, and 5) recruitment strategies and ethics considerations. Finally, we define methods for modelling the impacts and integrating them into an impact assessment tool
Evaluating impacts of bottom trawling and hypoxia on benthic communities at the local, habitat, and regional scale using a modelling approach
Bottom trawling disturbance and hypoxia are affecting marine benthic habitats worldwide. We present an approach to predict their effects on benthic communities, and use the approach to estimate the state, the biomass relative to carrying capacity, of the Baltic Sea at the local, habitat, and regional scale. Responses to both pressures are expected to depend on the longevity of fauna, which is predicted from benthic data from 1558 locations. We find that communities in low-salinity regions mostly consist of short-lived species, which are, in our model, more resilient than those of the saline areas. The model predicts that in 14% of the Baltic Sea region benthic biomass is reduced by at least 50%, whereas an additional 8% of the region has reductions of 10-50%. The effects of hypoxia occur over larger spatial scales and lead to a low state of especially deep habitats. The approach is based on a simple characterization of the benthic community, which comes with high uncertainty, but allows for the identification of benthic habitats that are at greatest risk and prioritization of management actions at the regional scale. This information supports the development of sustainable approaches to manage impact of human activities on benthic ecosystems.</p
Recommended from our members
Growth in marine mammals : a review of growth patterns, composition and energy investment
Funded under award from Office of Naval Research: N000142012392. DPC and SA were funded under the E&P Sound and Marine Life Joint Industry Programme of the International Association of Oil and Gas Producers (IOGP; grant 00-07-23). CRM is supported by the Australian Integrated Marine Observing System (IMOS), IMOS s enabled by the National Collaborative Research Infrastructure Strategy.Growth of structural mass and energy reserves influences individual survival, reproductive success, population and species life history. Metrics of structural growth and energy storage of individuals are often used to assess population health and reproductive potential, which can inform conservation. However, the energetic costs of tissue deposition for structural growth and energy stores and their prioritization within bioenergetic budgets are poorly documented. This is particularly true across marine mammal species as resources are accumulated at sea, limiting the ability to measure energy allocation and prioritization. We reviewed the literature on marine mammal growth to summarize growth patterns, explore their tissue compositions, assess the energetic costs of depositing these tissues and explore the tradeoffs associated with growth. Generally, marine mammals exhibit logarithmic growth. This means that the energetic costs related to growth and tissue deposition are high for early postnatal animals, but small compared to the total energy budget as animals get older. Growth patterns can also change in response to resource availability, habitat and other energy demands, such that they can serve as an indicator of individual and population health. Composition of tissues remained consistent with respect to protein and water content across species; however, there was a high degree of variability in the lipid content of both muscle (0.1–74.3%) and blubber (0.4–97.9%) due to the use of lipids as energy storage. We found that relatively few well-studied species dominate the literature, leaving data gaps for entire taxa, such as beaked whales. The purpose of this review was to identify such gaps, to inform future research priorities and to improve our understanding of how marine mammals grow and the associated energetic costs.Publisher PDFPeer reviewe
Meta-analyses of whale-watching impact studies : Comparisons of cetacean responses to disturbance
Acknowledgements. The International Whaling Commission funded this study through a grant assigned to D.L. D.L. was also funded by the Scottish Funding Council for funding through grant HR09011 to the Marine Alliance for Science and Technology for Scotland. While writing the manuscript, V.S. was sponsored by a Fulbright scholarship. We thank the many people that replied to the 2 MAR - MAM calls and Dr. Stankowich for his previous comments on the manuscript.Peer reviewedPublisher PD
High speed railway ground dynamics: a multi-model analysis
High speed railway track and earthwork structures experience varied levels of displacement amplification depending upon train speed. Protecting against amplified track deflections is challenging due to the complexity of deep wave propagation within both the track and supporting soil structures. Therefore it is challenging to derive design guidelines that encompass the full range of influential variables. As a solution, this paper uses a novel multi-model framework where 4 complimentary modelling strategies are combined, and thus able to generate new insights into railway ground dynamics and ‘critical velocity’. The four types of model are: 1) analytical, 2) hybrid analytical-numerical, 3) 2.5D numerical, 4) 3D numerical. They are used to explore subgrade layering, track type, train type, soil non-linearity, shakedown and ground improvement. The findings provide new insights into railway track-ground geodynamics and are useful when considering the design or upgrade of railroad lines
The Na(+)–H(+ )exchanger-1 induces cytoskeletal changes involving reciprocal RhoA and Rac1 signaling, resulting in motility and invasion in MDA-MB-435 cells
INTRODUCTION: An increasing body of evidence shows that the tumour microenvironment is essential in driving neoplastic progression. The low serum component of this microenvironment stimulates motility/invasion in human breast cancer cells via activation of the Na(+)–H(+ )exchanger (NHE) isoform 1, but the signal transduction systems that underlie this process are still poorly understood. We undertook the present study to elucidate the role and pattern of regulation by the Rho GTPases of this serum deprivation-dependent activation of both NHE1 and subsequent invasive characteristics, such as pseudopodia and invadiopodia protrusion, directed cell motility and penetration of normal tissues. METHODS: The present study was performed in a well characterized human mammary epithelial cell line representing late stage metastatic progression, MDA-MB-435. The activity of RhoA and Rac1 was modified using their dominant negative and constitutively active mutants and the activity of NHE1, cell motility/invasion, F-actin content and cell shape were measured. RESULTS: We show for the first time that serum deprivation induces NHE1-dependent morphological and cytoskeletal changes in metastatic cells via a reciprocal interaction of RhoA and Rac1, resulting in increased chemotaxis and invasion. Deprivation changed cell shape by reducing the amount of F-actin and inducing the formation of leading edge pseudopodia. Serum deprivation inhibited RhoA activity and stimulated Rac1 activity. Rac1 and RhoA were antagonistic regulators of both basal and stimulated tumour cell NHE1 activity. The regulation of NHE1 activity by RhoA and Rac1 in both conditions was mediated by an alteration in intracellular proton affinity of the exchanger. Interestingly, the role of each of these G-proteins was reversed during serum deprivation; basal NHE1 activity was regulated positively by RhoA and negatively by Rac1, whereas RhoA negatively and Rac1 positively directed the stimulation of NHE1 during serum deprivation. Importantly, the same pattern of RhoA and Rac1 regulation found for NHE1 activity was observed in both basal and serum deprivation dependent increases in motility, invasion and actin cytoskeletal organization. CONCLUSION: Our findings suggest that the reported antagonistic roles of RhoA and Rac1 in cell motility/invasion and cytoskeletal organization may be due, in part, to their concerted action on NHE1 activity as a convergence point
Bighorn Basin Coring Project (BBCP): a continental perspective on early Paleogene hyperthermals
During the summer of 2011, the Bighorn Basin Coring Project (BBCP) recovered over 900m of overlapping core from 3 different sites in late Paleocene to early Eocene fluvial deposits of northwestern Wyoming. BBCP cores are being used to develop high-resolution proxy records of the Paleocene–Eocene Thermal Maximum (PETM) and Eocene Thermal Maximum 2 (ETM2) hyperthermal events. These events are short-term, large magnitude global warming events associated with extreme perturbations to the earth’s carbon cycle. Although the PETM and ETM2 occurred ~55–52 million years ago, they are analogous in many ways to modern anthropogenic changes to the carbon cycle. By applying various sedimentological, geochemical, and palynological methods to the cores, we hope to better understand what caused these events, study the biogeochemical and ecological feedbacks that operated during them, and reveal precisely how they impacted continental environments.
Core recovery was > 98% in all holes and most drilling was carried out without fluid additives, showing that continuous coring of continental smectitic deposits like these can be achieved with minimal risk of contamination to molecular biomarkers. Cores were processed in the Bremen Core Repository where the science team convened for 17 days to carry out data collection and sampling protocols similar to IODP projects. Initial results show that the weathered horizon extends to as much as ~30m below the surface and variations in magnetic susceptibility within the cores record an interplay between grain size and pedogenesis. Previous investigations of outcrops near the BBCP drill sites allow detailed evaluation of the effects of weathering on common proxy methods. Studies of lithofacies, organic geochemistry, stable isotope geochemistry, calibrated XRF core scanning, paleomagnetics, and palynology are underway and will represent the highest resolution and most integrated proxy records of the PETM from a continental setting yet known. An extensive outreach program is in place to capitalize on the educational value associated with the Bighorn Basin’s unusually complete record of Phanerozoic earth history
The impact of predation by marine mammals on Patagonian toothfish longline fisheries
Predatory interaction of marine mammals with longline fisheries is observed globally, leading to partial or complete loss of the catch and in some parts of the world to considerable financial loss. Depredation can also create additional unrecorded fishing mortality of a stock and has the potential to introduce bias to stock assessments. Here we aim to characterise depredation in the Patagonian toothfish (Dissostichus eleginoides) fishery around South Georgia focusing on the spatio-temporal component of these interactions. Antarctic fur seals (Arctocephalus gazella), sperm whales (Physeter macrocephalus), and orcas (Orcinus orca) frequently feed on fish hooked on longlines around South Georgia. A third of longlines encounter sperm whales, but loss of catch due to sperm whales is insignificant when compared to that due to orcas, which interact with only 5% of longlines but can take more than half of the catch in some cases. Orca depredation around South Georgia is spatially limited and focused in areas of putative migration routes, and the impact is compounded as a result of the fishery also concentrating in those areas at those times. Understanding the seasonal behaviour of orcas and the spatial and temporal distribution of “depredation hot spots” can reduce marine mammal interactions, will improve assessment and management of the stock and contribute to increased operational efficiency of the fishery. Such information is valuable in the effort to resolve the human-mammal conflict for resources
- …