1,977 research outputs found
On the dependence between UV luminosity and Lyman-alpha equivalent width in high redshift galaxies
We show that with the simple assumption of no correlation between the
Ly-alpha equivalent width and the UV luminosity of a galaxy, the observed
distribution of high redshift galaxies in an equivalent width - absolute UV
magnitude plane can be reproduced. We further show that there is no dependence
between Ly-alpha equivalent width and Ly-alpha luminosity in a sample of
Ly-alpha emitters. The test was expanded to Lyman-break galaxies and again no
dependence was found. Simultaneously, we show that a recently proposed lack of
large equivalent width, UV bright galaxies (Ando et al. 2006) can be explained
by a simple observational effect, based on too small survey volumes.Comment: 7 pages, 3 figures, 2 tables, accepted in MNRA
On the Stereochemistry of the Cations in the Doping Block of Superconducting Copper-Oxides
Metal-oxygen complexes containing Cu,- Tl-, Hg-, Bi- and Pb-cations are
electronically active in superconducting copper-oxides by stabilizing single
phases with enhanced , whereas other metal-oxygen complexes deteriorate
copper-oxide superconductivity. Cu, Tl, Hg, Bi, Pb in their actual oxidation
states are closed shell or inert pair ions. Their electronic
configurations have a strong tendency to polarize the oxygen environment. The
closed shell ions with low lying
excitations form linear complexes through hybridization polarizing
the apical oxygens. Comparatively low excitation energies
distinguish from other closed shell
ions deteriorating copper-oxide superconductivity, {\it e.g.} .Comment: 5 pages, uses REVTEX. To be published in: J. Superconductivity, Proc.
Int. Workshop on "Phase Separation, Electronic Inhomogenities and Related
Mechanisms for High T_c Superconductors", Erice (Sicily) 9-15 July 199
Localization Properties of Two Interacting Electrons in a Disordered Quasi One-Dimensional Potential
We study the transport properties of two electrons in a quasi one-dimensional
disordered wire. The electrons are subject to both, a disorder potential and a
short range two-body interaction. Using the approach developed by Iida et al. [
Ann. Phys. (N.Y.) 200 (1990) 219 ], the supersymmetry technique, and a suitable
truncation of Hilbert space, we work out the two-point correlation function in
the framework of a non-linear sigma model. We study the loop corrections to
arbitrary order. We obtain a remarkably simple and physically transparent
expression for the change of the localization length caused by the two-body
interaction.Comment: 10 page
Ferromagnetism in a hard-core boson model
The problem of ferromagnetism -- associated with a ground state with maximal
total spin -- is discussed in the framework of a hard-core model, which forbids
the occupancy at each site with more than one particle. It is shown that the
emergence of ferromagnetism on finite square lattices crucially depends on the
statistics of the particles. Fermions (electrons) lead to the well-known
instabilities for finite hole densities, whereas for bosons (with spin)
ferromagnetism appears to be stable for all hole densities.Comment: 8 pages, 7 figures, RevTex
Ferromagnetic Kondo-Lattice Model
We present a many-body approach to the electronic and magnetic properties of
the (multiband) Kondo-lattice model with ferromagnetic interband exchange. The
coupling between itinerant conduction electrons and localized magnetic moments
leads, on the one hand, to a distinct temperature-dependence of the electronic
quasiparticle spectrum and, on the other hand, to magnetic properties, as
e.~g.the Curie temperature T_C or the magnon dispersion, which are strongly
influenced by the band electron selfenergy and therewith in particular by the
carrier density. We present results for the single-band Kondo-lattice model in
terms of quasiparticle densities of states and quasiparticle band structures
and demonstrate the density-dependence of the self-consistently derived Curie
temperature. The transition from weak-coupling (RKKY) to strong-coupling
(double exchange) behaviour is worked out.
The multiband model is combined with a tight-binding-LMTO bandstructure
calculation to describe real magnetic materials. As an example we present
results for the archetypal ferromagnetic local-moment systems EuO and EuS. The
proposed method avoids the double counting of relevant interactions and takes
into account the correct symmetry of atomic orbitals.Comment: 15 pages, 10 figure
Quark-hadron-duality in the charmonium and upsilon system
In this work we discuss the practical and conceptual issues related to
quark-hadron-duality in heavy-heavy systems. Recent measurements in the
charmonium region allow a direct test of quark-hadron-duality. We present a
formula for non-resonant background production in e^+ e^- \to D{\bar D} and
extract the resonance parameters of the \psi(3S)-\psi(6S). The obtained results
are used to investigate the upsilon energy range.Comment: 21 pages, 3 figures, references adde
The BioGRID Interaction Database: 2011 update
The Biological General Repository for Interaction Datasets (BioGRID) is a public database that archives and disseminates genetic and protein
interaction data from model organisms and humans
(http://www.thebiogrid.org). BioGRID currently holds 347 966
interactions (170 162 genetic, 177 804 protein) curated from both
high-throughput data sets and individual focused studies, as derived
from over 23 000 publications in the primary literature. Complete
coverage of the entire literature is maintained for budding yeast
(Saccharomyces cerevisiae), fission yeast (Schizosaccharomyces pombe)
and thale cress (Arabidopsis thaliana), and efforts to expand curation
across multiple metazoan species are underway. The BioGRID houses 48
831 human protein interactions that have been curated from 10 247
publications. Current curation drives are focused on particular areas
of biology to enable insights into conserved networks and pathways that
are relevant to human health. The BioGRID 3.0 web interface contains
new search and display features that enable rapid queries across
multiple data types and sources. An automated Interaction Management
System (IMS) is used to prioritize, coordinate and track curation
across international sites and projects. BioGRID provides interaction
data to several model organism databases, resources such as Entrez-Gene
and other interaction meta-databases. The entire BioGRID 3.0 data
collection may be downloaded in multiple file formats, including PSI MI
XML. Source code for BioGRID 3.0 is freely available without any
restrictions
Sex chromosome positions in human interphase nuclei as studied by in situ hybridization with chromosome specific DNA probes
Two cloned repetitive DNA probes, pXBR and CY1, which bind preferentially to specific regions of the human X and Y chromosome, respectively, were used to study the distribution of the sex chromosomes in human lymphocyte nuclei by in situ hybridization experiments. Our data indicate a large variability of the distances between the sex chromosomes in male and female interphase nuclei. However, the mean distance observed between the X and Y chromosome was significantly smaller than the mean distance observed between the two X-chromosomes. The distribution of distances determined experimentally is compared with three model distributions of distances, and the question of a non-random distribution of sex chromosomes is discussed. Mathematical details of these model distributions are provided in an Appendix to this paper. In the case of a human translocation chromosome (XqterXp22.2::Yq11Y qter) contained in the Chinese hamster x human hybrid cell line 445 x 393, the binding sites of pXBR and CY1 were found close to each other in most interphase nuclei. These data demonstrate the potential use of chromosome-specific repetitive DNA probes to study the problem of interphase chromosome topography
New Fermions at ee Colliders: I. Production and Decay
We analyze the production in collisions of new heavy fermions
stemming from extensions of the Standard Model. We write down the most general
expression for the production of two heavy fermions and their subsequent
decays, allowing for the polarization of the ee initial state and
taking into account the final polarization of the fermions. We then discuss the
various decay modes including cascade and three body decays, and the production
mechanisms, both pair production and single production in association with
ordinary fermions.Comment: 21 pages (no figures), Preprint UdeM-LPN-TH-93-15
Pulsed quantum optomechanics
Studying mechanical resonators via radiation pressure offers a rich avenue
for the exploration of quantum mechanical behavior in a macroscopic regime.
However, quantum state preparation and especially quantum state reconstruction
of mechanical oscillators remains a significant challenge. Here we propose a
scheme to realize quantum state tomography, squeezing and state purification of
a mechanical resonator using short optical pulses. The scheme presented allows
observation of mechanical quantum features despite preparation from a thermal
state and is shown to be experimentally feasible using optical microcavities.
Our framework thus provides a promising means to explore the quantum nature of
massive mechanical oscillators and can be applied to other systems such as
trapped ions.Comment: 9 pages, 4 figure
- …