44,659 research outputs found
Effects of ursodeoxycholic acid on synthesis of cholesterol and bile acids in healthy subjects
Background/Aims: Ursodeoxycholic acid ( UDCA) decreases biliary secretion of cholesterol and is therefore used for the dissolution of cholesterol gallstones. It remains unclear whether these changes in biliary cholesterol excretion are associated with changes in cholesterol synthesis and bile acid synthesis. We therefore studied the activities of rate-limiting enzymes of cholesterol synthesis and bile acid synthesis, 3-hydroxy-3-methyl-glutarylcoenzyme A reductase and cholesterol 7alpha-hydroxylase, respectively, in normal subjects during UDCA feeding. Methods: UDCA was given to 8 healthy volunteers ( 5 men, 3 women; age 24-44 years) in a single dose of 10-15 mg/kg body weight for 40 days. Before and during ( days 3, 5, 10, 20, 30 and 40) UDCA treatment, urinary excretion of mevalonic acid and serum concentrations of 7alpha-hydroxy-4-cholesten-3-one (7alpha-HCO) were determined as markers of cholesterol and bile acid synthesis, respectively. The Wilcoxon signed rank test and Spearman's rank correlation coefficient were used for statistical analysis. Results: Cholesterol synthesis and serum lipid concentrations remained unchanged during UDCA treatment for 40 days. However, synthesis of bile acids increased during long-term treatment with UDCA as reflected by an increase in 7alpha-HCO serum concentrations from 39.7 +/- 21.3 ng/ml (median 32.8 ng/ml) before treatment to 64.0 +/- 30.4 ng/ml (median 77.5 ng/ml) at days 30-40 of UDCA treatment ( p < 0.05). Conclusions: UDCA treatment does not affect cholesterol synthesis in the liver, but does increase bile acid synthesis after prolonged treatment. This may represent a compensatory change following decreased absorption of endogenous bile acids as observed with UDCA therapy
Beyond density functional theory: the domestication of nonlocal potentials
Due to efficient scaling with electron number N, density functional theory
(DFT) is widely used for studies of large molecules and solids. Restriction of
an exact mean-field theory to local potential functions has recently been
questioned. This review summarizes motivation for extending current DFT to
include nonlocal one-electron potentials, and proposes methodology for
implementation of the theory. The theoretical model, orbital functional theory
(OFT), is shown to be exact in principle for the general N-electron problem. In
practice it must depend on a parametrized correlation energy functional.
Functionals are proposed suitable for short-range Coulomb-cusp correlation and
for long-range polarization response correlation. A linearized variational
cellular method (LVCM) is proposed as a common formalism for molecules and
solids. Implementation of nonlocal potentials is reduced to independent
calculations for each inequivalent atomic cell.Comment: Accepted for publication in Modern Physics Letters B (2004
Long-term evolution of massive star explosions
We examine simulations of core-collapse supernovae in spherical symmetry. Our
model is based on general relativistic radiation hydrodynamics with
three-flavor Boltzmann neutrino transport. We discuss the different supernova
phases, including the long-term evolution up to 20 seconds after the onset of
explosion during which the neutrino fluxes and mean energies decrease
continuously. In addition, the spectra of all flavors become increasingly
similar, indicating the change from charged- to neutral-current dominance.
Furthermore, it has been shown recently by several groups independently, based
on sophisticated supernova models, that collective neutrino flavor oscillations
are suppressed during the early mass-accretion dominated post-bounce evolution.
Here we focus on the possibility of collective flavor flips between electron
and non-electron flavors during the later, on the order of seconds, evolution
after the onset of an explosion with possible application for the
nucleosynthesis of heavy elements.Comment: 12 pages, 7 figures, conference proceeding, HANSE 2011 worksho
Gender Action Plan 2017 for the Africa RISING West Africa and East/Southern Africa Projects
United States Agency for International Developmen
Design studies of continuously variable transmissions for electric vehicles
Preliminary design studies were performed on four continuously variable transmission (CVT) concepts for use with a flywheel equipped electric vehicle of 1700 kg gross weight. Requirements of the CVT's were a maximum torque of 450 N-m (330 lb-ft), a maximum output power of 75 kW (100 hp), and a flywheel speed range of 28,000 to 14,000 rpm. Efficiency, size, weight, cost, reliability, maintainability, and controls were evaluated for each of the four concepts which included a steel V-belt type, a flat rubber belt type, a toroidal traction type, and a cone roller traction type. All CVT's exhibited relatively high calculated efficiencies (68 percent to 97 percent) over a broad range of vehicle operating conditions. Estimated weight and size of these transmissions were comparable to or less than equivalent automatic transmission. The design of each concept was carried through the design layout stage
Wetting of anisotropic sinusoidal surfaces - experimental and numerical study of directional spreading
Directional wettability, i.e. variation of wetting properties depending on the surface orientation, can be achieved by anisotropic surface texturing. A new high precision process can produce homogeneous sinusoidal surfaces (in particular parallel grooves) at the micro-scale, with a nano-scale residual roughness five orders of magnitude smaller than the texture features. Static wetting experiments have shown that this pattern, even with a very small aspect ratio, can induce a strong variation of contact angle depending on the direction of observation. A comparison with numerical simulations (using Surface Evolver software) shows good agreement and could be used to predict the fluid-solid interaction and droplet behaviour on textured surfaces. Two primary mechanisms of directional spreading of water droplets on textured stainless steel surface have been identified. The first one is the mechanical barrier created by the textured surface peaks, this limits spreading in perpendicular direction to the surface anisotropy. The second one is the capillary action inside the sinusoidal grooves accelerating spreading along the grooves. Spreading has been shown to depend strongly on the history of wetting and internal drop dynamics
On the GPU computing of massive forming process simulations
This contribution presents a modelling tool for massive forming processes that is based on a particle method. The introduced model is able to represent the realistic behaviour of different types of forming processes. As these systems usually require large amounts of particles, the potential of GPU Computing with CUDA as a possibility for performance enhancement of particle simulations is analyzed as well
Correlated motion of two atoms trapped in a single mode cavity field
We study the motion of two atoms trapped at distant positions in the field of
a driven standing wave high-Q optical resonator. Even without any direct
atom-atom interaction the atoms are coupled through their position dependent
influence on the intracavity field. For sufficiently good trapping and low
cavity losses the atomic motion becomes significantly correlated and the two
particles oscillate in their wells preferentially with a 90 degrees relative
phase shift. The onset of correlations seriously limits cavity cooling
efficiency, raising the achievable temperature to the Doppler limit. The
physical origin of the correlation can be traced back to a cavity mediated
cross-friction, i.e. a friction force on one particle depending on the velocity
of the second particle. Choosing appropriate operating conditions allows for
engineering these long range correlations. In addition this cross-friction
effect can provide a basis for sympathetic cooling of distant trapped clouds.Comment: 10 pages, 9 figures, accepted for publication in Phys. Rev. A. Minor
grammatical changes to previous versio
Metastability and uniqueness of vortex states at depinning
We present results from numerical simulations of transport of vortices in the
zero-field cooled (ZFC) and the field-cooled (FC) state of a type-II
superconductor. In the absence of an applied current , we find that the FC
state has a lower defect density than the ZFC state, and is stable against
thermal cycling. On the other hand, by cycling , surprisingly we find that
the ZFC state is the stable state. The FC state is metastable as manifested by
increasing to the depinning current , in which case the FC state
evolves into the ZFC state. We also find that all configurations acquire a
unique defect density at the depinning transition independent of the history of
the initial states.Comment: 4 pages, 4 figures. Problem of page size correcte
Strange matter in core-collapse supernovae
We discuss the possible impact of strange quark matter on the evolution of
core-collapse supernovae with emphasis on low critical densities for the
quark-hadron phase transition. For such cases the hot proto-neutron star can
collapse to a more compact hybrid star configuration hundreds of milliseconds
after core-bounce. The collapse triggers the formation of a second shock wave.
The latter leads to a successful supernova explosion and leaves an imprint on
the neutrino signal. These dynamical features are discussed with respect to
their compatibility with recent neutron star mass measurements which indicate a
stiff high density nuclear matter equation of state.Comment: 8 pages, 3 figures, Invited talk at the "Strangeness in Quark Matter"
conference, 18-24 September 2011, Polish Academy of Arts and Sciences,
Cracow, Polan
- …