2,048 research outputs found

    The dynamical distance and intrinsic structure of the globular cluster omega Centauri

    Get PDF
    We determine the dynamical distance D, inclination i, mass-to-light ratio M/L and the intrinsic orbital structure of the globular cluster omega Cen, by fitting axisymmetric dynamical models to the ground-based proper motions of van Leeuwen et al. and line-of-sight velocities from four independent data-sets. We correct the observed velocities for perspective rotation caused by the space motion of the cluster, and show that the residual solid-body rotation component in the proper motions can be taken out without any modelling other than assuming axisymmetry. This also provides a tight constraint on D tan i. Application of our axisymmetric implementation of Schwarzschild's orbit superposition method to omega Cen reveals no dynamical evidence for a significant radial dependence of M/L. The best-fit dynamical model has a stellar V-band mass-to-light ratio M/L_V = 2.5 +/- 0.1 M_sun/L_sun and an inclination i = 50 +/- 4 degrees, which corresponds to an average intrinsic axial ratio of 0.78 +/- 0.03. The best-fit dynamical distance D = 4.8 +/- 0.3 kpc (distance modulus 13.75 +/- 0.13 mag) is significantly larger than obtained by means of simple spherical or constant-anisotropy axisymmetric dynamical models, and is consistent with the canonical value 5.0 +/- 0.2 kpc obtained by photometric methods. The total mass of the cluster is (2.5 +/- 0.3) x 10^6 M_sun. The best-fit model is close to isotropic inside a radius of about 10 arcmin and becomes increasingly tangentially anisotropic in the outer region, which displays significant mean rotation. This phase-space structure may well be caused by the effects of the tidal field of the Milky Way. The cluster contains a separate disk-like component in the radial range between 1 and 3 arcmin, contributing about 4% to the total mass.Comment: 37 pages (23 figures), accepted for publication in A&A, abstract abridged, for PS and PDF file with full resolution figures, see http://www.strw.leidenuniv.nl/~vdven/oc

    Broad expertise retrieval in sparse data environments

    Get PDF
    Expertise retrieval has been largely unexplored on data other than the W3C collection. At the same time, many intranets of universities and other knowledge-intensive organisations offer examples of relatively small but clean multilingual expertise data, covering broad ranges of expertise areas. We first present two main expertise retrieval tasks, along with a set of baseline approaches based on generative language modeling, aimed at finding expertise relations between topics and people. For our experimental evaluation, we introduce (and release) a new test set based on a crawl of a university site. Using this test set, we conduct two series of experiments. The first is aimed at determining the effectiveness of baseline expertise retrieval methods applied to the new test set. The second is aimed at assessing refined models that exploit characteristic features of the new test set, such as the organizational structure of the university, and the hierarchical structure of the topics in the test set. Expertise retrieval models are shown to be robust with respect to environments smaller than the W3C collection, and current techniques appear to be generalizable to other settings

    Distinguishing syntactic operations in the brain: Dependency and phrase-structure parsing

    Get PDF
    Finding the structure of a sentence — the way its words hold together to convey meaning — is a fundamental step in language comprehension. Several brain regions, including the left inferior frontal gyrus, the left posterior superior temporal gyrus, and the left anterior temporal pole, are supposed to support this operation. The exact role of these areas is nonetheless still debated. In this paper we investigate the hypothesis that different brain regions could be sensitive to different kinds of syntactic computations. We compare the fit of phrase-structure and dependency structure descriptors to activity in brain areas using fMRI. Our results show a division between areas with regard to the type of structure computed, with the left ATP and left IFG favouring dependency structures and left pSTG favouring phrase structures

    A Letter of Hendrik G. Klijn and K. Van De Bosch to the Christelijke Afgescheidenen in Nederland

    Get PDF
    A letter of Hendrik G. Klijn and K. van de Bosch to the Christelijke Afgescheidenen in Nederland shortly after these two Reformed Church in America ministers separated themselves along with their congregations from the Reformed Church in America and leading to the formation of the Christian Reformed Church.https://digitalcommons.hope.edu/vrp_1850s/1371/thumbnail.jp

    The SAURON project – XVII. Stellar population analysis of the absorption line strength maps of 48 early-type galaxies

    Get PDF
    The definitive version can be found at: http://onlinelibrary.wiley.com/ Copyright Royal Astronomical SocietyWe present a stellar population analysis of the absorption line strength maps for 48 early-type galaxies from the SAURON sample. Using the line strength index maps of Hβ, Fe5015 and Mg b, measured in the Lick/IDS system and spatially binned to a constant signal-to-noise ratio, together with predictions from up-to-date stellar population models, we estimate the simple stellar population-equivalent (SSP-equivalent) age, metallicity and abundance ratio [α/Fe] over a two-dimensional field extending up to approximately one effective radius. A discussion of calibrations and differences between model predictions is given. Maps of SSP-equivalent age, metallicity and abundance ratio [α/Fe] are presented for each galaxy. We find a large range of SSP-equivalent ages in our sample, of which ∼40 per cent of the galaxies show signs of a contribution from a young stellar population. The most extreme cases of post-starburst galaxies, with SSP-equivalent ages of ≤3 Gyr observed over the full field-of-view, and sometimes even showing signs of residual star formation, are restricted to low-mass systems (σe≤ 100 km s−1 or ∼2 × 1010 M⊙). Spatially restricted cases of young stellar populations in circumnuclear regions can almost exclusively be linked to the presence of star formation in a thin, dusty disc/ring, also seen in the near-UV or mid-IR on top of an older underlying stellar population. The flattened components with disc-like kinematics previously identified in all fast rotators are shown to be connected to regions of distinct stellar populations. These range from the young, still star-forming circumnuclear discs and rings with increased metallicity preferentially found in intermediate-mass fast rotators, to apparently old structures with extended disc-like kinematics, which are observed to have an increased metallicity and mildly depressed [α/Fe] ratio compared to the main body of the galaxy. The slow rotators, often harbouring kinematically decoupled components (KDC) in their central regions, generally show no stellar population signatures over and above the well-known metallicity gradients in early-type galaxies and are largely consistent with old (≥10 Gyr) stellar populations. Using radially averaged stellar population gradients we find in agreement with Spolaor et al. a mass–metallicity gradient relation where low-mass fast rotators form a sequence of increasing metallicity gradient with increasing mass. For more massive systems (above ∼3.5 × 1010 M⊙) there is an overall downturn such that metallicity gradients become shallower with increased scatter at a given mass leading to the most massive systems being slow rotators with relatively shallow metallicity gradients. The observed shallower metallicity gradients and increased scatter could be a consequence of the competition between different star formation and assembly scenarios following a general trend of diminishing gas fractions and more equal-mass mergers with increasing mass, leading to the most massive systems being devoid of ordered motion and signs of recent star formation.Peer reviewe

    An Over-Massive Black Hole in the Compact Lenticular Galaxy NGC1277

    Get PDF
    All massive galaxies likely have supermassive black holes at their centers, and the masses of the black holes are known to correlate with properties of the host galaxy bulge component. Several explanations have been proposed for the existence of these locally-established empirical relationships; they include the non-causal, statistical process of galaxy-galaxy merging, direct feedback between the black hole and its host galaxy, or galaxy-galaxy merging and the subsequent violent relaxation and dissipation. The empirical scaling relations are thus important for distinguishing between various theoretical models of galaxy evolution, and they further form the basis for all black hole mass measurements at large distances. In particular, observations have shown that the mass of the black hole is typically 0.1% of the stellar bulge mass of the galaxy. The small galaxy NGC4486B currently has the largest published fraction of its mass in a black hole at 11%. Here we report observations of the stellar kinematics of NGC 1277, which is a compact, disky galaxy with a mass of 1.2 x 10^11 Msun. From the data, we determine that the mass of the central black hole is 1.7 x 10^10 Msun, or 59% its bulge mass. Five other compact galaxies have properties similar to NGC 1277 and therefore may also contain over-sized black holes. It is not yet known if these galaxies represent a tail of a distribution, or if disk-dominated galaxies fail to follow the normal black hole mass scaling relations.Comment: 7 pages. 6 figures. Nature. Animation at http://www.mpia.de/~bosch/blackholes.htm

    The Substructure Hierarchy in Dark Matter Haloes

    Full text link
    We present a new algorithm for identifying the substructure within simulated dark matter haloes. The method is an extension of that proposed by Tormen et al. (2004) and Giocoli et al. (2008a), which identifies a subhalo as a group of self-bound particles that prior to being accreted by the main progenitor of the host halo belonged to one and the same progenitor halo (hereafter satellite). However, this definition does not account for the fact that these satellite haloes themselves may also have substructure, which thus gives rise to sub-subhaloes, etc. Our new algorithm identifies substructures at all levels of this hierarchy, and we use it to determine the mass function of all substructure (counting sub-haloes, sub-subhaloes, etc.). On average, haloes which formed more recently tend to have a larger mass fraction in substructure and to be less concentrated than average haloes of the same mass. We provide quantitative fits to these correlations. Even though our algorithm is very different from that of Gao et al. (2004), we too find that the subhalo mass function per unit mass at redshift z = 0 is universal. This universality extends to any redshift only if one accounts for the fact that host haloes of a given mass are less concentrated at higher redshifts, and concentration and substructure abundance are anti-correlated. This universality allows a simple parametrization of the subhalo mass function integrated over all host halo masses, at any given time. We provide analytic fits to this function which should be useful in halo model analyses which equate galaxies with halo substructure when interpreting clustering in large sky surveys. Finally, we discuss systematic differences in the subhalo mass function that arise from different definitions of (host) halo mass.Comment: 18 pages, 24 figures, accepted for publication on MNRA

    The SAURON project - XXI : The spatially resolved UV-line strength relations of early-type galaxies

    Get PDF
    The unexpected rising flux of early-type galaxies at decreasing ultraviolet (UV) wavelengths is a long-standing mystery. One important observational constraint is the correlation between UVoptical colours and Mg2 line strengths found by Burstein et al. The simplest interpretation of this phenomenon is that the UV strength is related to the Mg line strength. Under this assumption, we expect galaxies with larger Mg gradients to have larger UV colour gradients. By combining UV imaging from GALEX, optical imaging from MDM and SAURON integral-field spectroscopy, we investigate the spatially resolved relationships between UV colours and stellar population properties of 34 early-type galaxies from the SAURON survey sample. We find that galaxies with old stellar populations show tight correlations between the far-UV (FUV) colours (FUV -V and FUV - NUV) and the Mg b index, H beta index and metallicity [Z/H]. The equivalent correlations for the Fe5015 index, a-enhancement [a/Fe] and age are present but weaker. We have also derived logarithmic internal radial colour, measured line strength and derived stellar population gradients for each galaxy and again found a strong dependence of the FUV -V and FUV - NUV colour gradients on both the Mg b line strength and the metallicity gradients for galaxies with old stellar populations. In particular, global gradients of Mg b and [Z/H] with respect to the UV colour [e.g. ?(Mg b)/(FUV - NUV) and ?[Z/H]/?(FUV - NUV)] across galaxies are consistent with their local gradients within galaxies, suggesting that the global correlations also hold locally. From a simple model based on multiband colour fits of UV upturn and UV-weak galaxies, we have identified a plausible range of parameters that reproduces the observed radial colour profiles. In these models, the centres of elliptical galaxies, where the UV flux is strong, are enhanced in metals by roughly 60 per cent compared to UV-weak regions.Peer reviewe

    Semi-Analytical Models for the Formation of Disk Galaxies II. Dark Matter versus Modified Newtonian Dynamics

    Full text link
    We present detailed semi-analytical models for the formation of disk galaxies both in a Universe dominated by dark matter (DM), and in one for which the force law is given by modified Newtonian dynamics (MOND). We tune the models to fit the observed near-infrared Tully-Fisher (TF) relation, and compare numerous predictions of the resulting models with observations. The DM and MOND models are almost indistinguishable. They both yield gas mass fractions and dynamical mass-to-light ratios which are in good agreement with observations. Both models reproduce the narrow relation between global mass-to-light ratio and central surface brightness, and reveal a characteristic acceleration, contrary to claims that these relations are not predicted by DM models. Both models require SN feedback in order to reproduce the lack of high surface brightness dwarf galaxies. However, the introduction of feedback to the MOND models steepens the TF relation and increases the scatter, making MOND only marginally consistent with observations. The most serious problem for the DM models is their prediction of steep central rotation curves. However, the DM rotation curves are only slightly steeper than those of MOND, and are only marginally inconsistent with the poor resolution data on LSB galaxies.Comment: 26 pages, 11 figures. Accepted for publication in Ap
    corecore