1,457 research outputs found
What can be learned from binding energy differences about nuclear structure: the example of delta V_{pn}
We perform an analysis of a binding energy difference called delta
V_{pn}(N,Z) =- 1/4(E(Z,N)-E(Z,N-2)-E(Z-2,N)+ E(Z-2,N-2) in the framework of a
realistic nuclear model. Using the angular-momentum and particle-number
projected generator coordinate method and the Skyrme interaction SLy4, we
analyze the contribution brought to delta V_{pn} by static deformation and
dynamic fluctuations around the mean-field ground state. Our method gives a
good overall description of delta V_{pn} throughout the chart of nuclei with
the exception of the anomaly related to the Wigner energy along the N=Z line.
The main conclusions of our analysis are that (i) the structures seen in the
systematics of delta V_{pn} throughout the chart of nuclei can be easily
explained combining a smooth background related to the symmetry energy and
correlation energies due to deformation and collective fluctuations; (ii) the
characteristic pattern of delta V_{pn} around a doubly-magic nucleus is a
trivial consequence of the asymmetric definition of delta V_{pn}, and not due
to a the different structure of these nuclei; (iii) delta V_{pn} does not
provide a very reliable indicator for structural changes; (iv) \delta V_{pn}
does not provide a reliable measure of the proton-neutron interaction in the
nuclear EDF, neither of that between the last filled orbits, nor of the one
summed over all orbits; (v) delta V_{pn} does not provide a conclusive
benchmark for nuclear EDF methods that is superior or complementary to other
mass filters such as two-nucleon separation energies or Q values.Comment: 19 pages and 12 figure
Binomial level densities
It is shown that nuclear level densities in a finite space are described by a
continuous binomial function, determined by the first three moments of the
Hamiltonian, and the dimensionality of the underlying vector space.
Experimental values for Mn, Fe, and Ni are very well
reproduced by the binomial form, which turns out to be almost perfectly
approximated by Bethe's formula with backshift. A proof is given that binomial
densities reproduce the low moments of Hamiltonians of any rank: A strong form
of the famous central limit result of Mon and French. Conditions under which
the proof may be extended to the full spectrum are examined.Comment: 4 pages 2 figures Second version (previous not totally superseeded
Analytical description of finite size effects for RNA secondary structures
The ensemble of RNA secondary structures of uniform sequences is studied
analytically. We calculate the partition function for very long sequences and
discuss how the cross-over length, beyond which asymptotic scaling laws apply,
depends on thermodynamic parameters. For realistic choices of parameters this
length can be much longer than natural RNA molecules. This has to be taken into
account when applying asymptotic theory to interpret experiments or numerical
results.Comment: 10 pages, 13 figures, published in Phys. Rev.
Quantification of the differences between quenched and annealed averaging for RNA secondary structures
The analytical study of disordered system is usually difficult due to the
necessity to perform a quenched average over the disorder. Thus, one may resort
to the easier annealed ensemble as an approximation to the quenched system. In
the study of RNA secondary structures, we explicitly quantify the deviation of
this approximation from the quenched ensemble by looking at the correlations
between neighboring bases. This quantified deviation then allows us to propose
a constrained annealed ensemble which predicts physical quantities much closer
to the results of the quenched ensemble without becoming technically
intractable.Comment: 9 pages, 14 figures, submitted to Phys. Rev.
Spectroscopy with random and displaced random ensembles
Due to the time reversal invariance of the angular momentum operator J^2, the
average energies and variances at fixed J for random two-body Hamiltonians
exhibit odd-even-J staggering, that may be especially strong for J=0. It is
shown that upon ensemble averaging over random runs, this behaviour is
reflected in the yrast states. Displaced (attractive) random ensembles lead to
rotational spectra with strongly enhanced BE2 transitions for a certain class
of model spaces. It is explained how to generalize these results to other forms
of collectivity.Comment: 4 pages, 4 figure
Shell Model Monte Carlo studies of neutron-rich nuclei in the 1s-0d-1p-0f shells
We demonstrate the feasibility of realistic Shell-Model Monte Carlo (SMMC)
calculations spanning multiple major shells, using a realistic interaction
whose bad saturation and shell properties have been corrected by a newly
developed general prescription. Particular attention is paid to the approximate
restoration of translational invariance. The model space consists of the full
sd-pf shells. We include in the study some well-known T=0 nuclei and several
unstable neutron-rich ones around N=20,28. The results indicate that SMMC can
reproduce binding energies, B(E2) transitions, and other observables with an
interaction that is practically parameter free. Some interesting insight is
gained on the nature of deep correlations. The validity of previous studies is
confirmed.Comment: 22 pages + 7 postscript figure
CentroidFold: a web server for RNA secondary structure prediction
The CentroidFold web server (http://www.ncrna.org/centroidfold/) is a web application for RNA secondary structure prediction powered by one of the most accurate prediction engine. The server accepts two kinds of sequence data: a single RNA sequence and a multiple alignment of RNA sequences. It responses with a prediction result shown as a popular base-pair notation and a graph representation. PDF version of the graph representation is also available. For a multiple alignment sequence, the server predicts a common secondary structure. Usage of the server is quite simple. You can paste a single RNA sequence (FASTA or plain sequence text) or a multiple alignment (CLUSTAL-W format) into the textarea then click on the ‘execute CentroidFold’ button. The server quickly responses with a prediction result. The major advantage of this server is that it employs our original CentroidFold software as its prediction engine which scores the best accuracy in our benchmark results. Our web server is freely available with no login requirement
Shell evolution and nuclear forces
We present a quantitative study of the role played by different components
characterizing the nucleon-nucleon interaction in the evolution of the nuclear
shell structure. It is based on the spin-tensor decomposition of an effective
two-body shell-model interaction and the subsequent study of effective
single-particle energy variations in a series of isotopes or isotones. The
technique allows to separate unambiguously contributions of the central, vector
and tensor components of the realistic effective interaction. We show that
while the global variation of the single-particle energies is due to the
central component of the effective interaction, the characteristic behavior of
spin-orbit partners, noticed recently, is mainly due to its tensor part. Based
on the analysis of a well-fitted realistic interaction in sdpf-shell model
space, we analyze in detail the role played by the different terms in the
formation and/or disappearance of N=16, N=20 and N=28 shell gaps in
neutron-rich nuclei.Comment: 6 pages, 4 figure
Improving signal-to-noise resolution in single molecule experiments using molecular constructs with short handles
We investigate unfolding/folding force kinetics in DNA hairpins exhibiting
two and three states with newly designed short dsDNA handles (29 bp) using
optical tweezers. We show how the higher stiffness of the molecular setup
moderately enhances the signal-to-noise ratio (SNR) in hopping experiments as
compared to conventional long handles constructs (approximately 700 bp). The
shorter construct results in a signal of higher SNR and slower
folding/unfolding kinetics, thereby facilitating the detection of otherwise
fast structural transitions. A novel analysis of the elastic properties of the
molecular setup, based on high-bandwidth measurements of force fluctuations
along the folded branch, reveals that the highest SNR that can be achieved with
short handles is potentially limited by the marked reduction of the effective
persistence length and stretch modulus of the short linker complex.Comment: Main paper: 20 pages and 6 figures. Supplementary Material: 25 page
Low-momentum interactions for nuclei
We show how the renormalization group is used to construct a low-momentum
nucleon-nucleon interaction V_{low k}, which unifies all potential models used
in nuclear structure calculations. V_{low k} can be directly applied to the
nuclear shell model or to nucleonic matter without a G matrix resummation. It
is argued that V_{low k} parameterizes a high-order chiral effective field
theory two-nucleon force. We use cutoff dependence as a tool to assess the
error in the truncation of nuclear forces to two-nucleon interactions and
introduce a low-momentum three-nucleon force, which regulates A=3,4 binding
energies. The adjusted three-nucleon interaction is perturbative for small
cutoffs. In contrast to other precision interactions, the error due to missing
many-body forces can be estimated, when V_{low k} and the corresponding
three-nucleon force are used in nuclear structure calculations and the cutoff
is varied.Comment: 10 pages, 5 figures, talk at INT workshop on Nuclear Forces and the
Quantum Many-Body Problem, Seattle, October 200
- …