32 research outputs found

    Quantitative Historical Change in Bumblebee (Bombus spp.) Assemblages of Red Clover Fields

    Get PDF
    Flower visiting insects provide a vitally important pollination service for many crops and wild plants. Recent decline of pollinating insects due to anthropogenic modification of habitats and climate, in particular from 1950's onwards, is a major and widespread concern. However, few studies document the extent of declines in species diversity, and no studies have previously quantified local abundance declines. We here make a quantitative assessment of recent historical changes in bumblebee assemblages by comparing contemporary and historical survey data. species observed in the 1930's, five species were not observed at present. The latter were all long-tongued, late-emerging species.Because bumblebees are important pollinators, historical changes in local bumblebee assemblages are expected to severely affect plant reproduction, in particular long-tubed species, which are pollinated by long-tongued bumblebees

    Does Pathogen Spillover from Commercially Reared Bumble Bees Threaten Wild Pollinators?

    Get PDF
    The conservation of insect pollinators is drawing attention because of reported declines in bee species and the ‘ecosystem services’ they provide. This issue has been brought to a head by recent devastating losses of honey bees throughout North America (so called, ‘Colony Collapse Disorder’); yet, we still have little understanding of the cause(s) of bee declines. Wild bumble bees (Bombus spp.) have also suffered serious declines and circumstantial evidence suggests that pathogen ‘spillover’ from commercially reared bumble bees, which are used extensively to pollinate greenhouse crops, is a possible cause. We constructed a spatially explicit model of pathogen spillover in bumble bees and, using laboratory experiments and the literature, estimated parameter values for the spillover of Crithidia bombi, a destructive pathogen commonly found in commercial Bombus. We also monitored wild bumble bee populations near greenhouses for evidence of pathogen spillover, and compared the fit of our model to patterns of C. bombi infection observed in the field. Our model predicts that, during the first three months of spillover, transmission from commercial hives would infect up to 20% of wild bumble bees within 2 km of the greenhouse. However, a travelling wave of disease is predicted to form suddenly, infecting up to 35–100% of wild Bombus, and spread away from the greenhouse at a rate of 2 km/wk. In the field, although we did not observe a large epizootic wave of infection, the prevalences of C. bombi near greenhouses were consistent with our model. Indeed, we found that spillover has allowed C. bombi to invade several wild bumble bee species near greenhouses. Given the available evidence, it is likely that pathogen spillover from commercial bees is contributing to the ongoing decline of wild Bombus in North America. Improved management of domestic bees, for example by reducing their parasite loads and their overlap with wild congeners, could diminish or even eliminate pathogen spillover

    Bumble Bees (Bombus spp) along a Gradient of Increasing Urbanization

    Get PDF
    BACKGROUND: Bumble bees and other wild bees are important pollinators of wild flowers and several cultivated crop plants, and have declined in diversity and abundance during the last decades. The main cause of the decline is believed to be habitat destruction and fragmentation associated with urbanization and agricultural intensification. Urbanization is a process that involves dramatic and persistent changes of the landscape, increasing the amount of built-up areas while decreasing the amount of green areas. However, urban green areas can also provide suitable alternative habitats for wild bees. METHODOLOGY/PRINCIPAL FINDINGS: We studied bumble bees in allotment gardens, i.e. intensively managed flower rich green areas, along a gradient of urbanization from the inner city of Stockholm towards more rural (periurban) areas. Keeping habitat quality similar along the urbanization gradient allowed us to separate the effect of landscape change (e.g. proportion impervious surface) from variation in habitat quality. Bumble bee diversity (after rarefaction to 25 individuals) decreased with increasing urbanization, from around eight species on sites in more rural areas to between five and six species in urban allotment gardens. Bumble bee abundance and species composition were most affected by qualities related to the management of the allotment areas, such as local flower abundance. The variability in bumble bee visits between allotment gardens was higher in an urban than in a periurban context, particularly among small and long-tongued bumble bee species. CONCLUSIONS/SIGNIFICANCE: Our results suggest that allotment gardens and other urban green areas can serve as important alternatives to natural habitats for many bumble bee species, but that the surrounding urban landscape influences how many species that will be present. The higher variability in abundance of certain species in the most urban areas may indicate a weaker reliability of the ecosystem service pollination in areas strongly influenced by human activity

    Neonicotinoid Insecticides and Their Impacts on Bees: A Systematic Review of Research Approaches and Identification of Knowledge Gaps

    Get PDF
    It has been suggested that the widespread use of neonicotinoid insecticides threatens bees, but research on this topic has been surrounded by controversy. In order to synthesize which research approaches have been used to examine the effect of neonicotinoids on bees and to identify knowledge gaps, we systematically reviewed research on this subject that was available on the Web of Science and PubMed in June 2015. Most of the 216 primary research studies were conducted in Europe or North America (82%), involved the neonicotinoid imidacloprid (78%), and concerned the western honey bee Apis mellifera (75%). Thus, little seems to be known about neonicotinoids and bees in areas outside Europe and North America. Furthermore, because there is considerable variation in ecological traits among bee taxa, studies on honey bees are not likely to fully predict impacts of neonicotinoids on other species. Studies on crops were dominated by seed-treated maize, oilseed rape (canola) and sunflower, whereas less is known about potential side effects on bees from the use of other application methods on insect pollinated fruit and vegetable crops, or on lawns and ornamental plants. Laboratory approaches were most common, and we suggest that their capability to infer real-world consequences are improved when combined with information from field studies about realistic exposures to neonicotinoids. Studies using field approaches often examined only bee exposure to neonicotinoids and more field studies are needed that measure impacts of exposure. Most studies measured effects on individual bees. We suggest that effects on the individual bee should be linked to both mechanisms at the sub-individual level and also to the consequences for the colony and wider bee populations. As bees are increasingly facing multiple interacting pressures future research needs to clarify the role of neonicotinoids in relative to other drivers of bee declines

    Cutaneous lesions of the nose

    Get PDF
    Skin diseases on the nose are seen in a variety of medical disciplines. Dermatologists, otorhinolaryngologists, general practitioners and general plastic and dermatologic surgeons are regularly consulted regarding cutaneous lesions on the nose. This article is the second part of a review series dealing with cutaneous lesions on the head and face, which are frequently seen in daily practice by a dermatologic surgeon. In this review, we focus on those skin diseases on the nose where surgery or laser therapy is considered a possible treatment option or that can be surgically evaluated

    Conservation of pollinators in traditional agricultural landscapes – New challenges in Transylvania (Romania) posed by EU accession and recommendations for future research

    Get PDF
    Farmland biodiversity is strongly declining in most of Western Europe, but still survives in traditional low intensity agricultural landscapes in Central and Eastern Europe. Accession to the EU however intensifies agriculture, which leads to the vanishing of traditional farming. Our aim was to describe the pollinator assemblages of the last remnants of these landscapes, thus set the baseline of sustainable farming for pollination, and to highlight potential measures of conservation. In these traditional farmlands in the Transylvanian Basin, Romania (EU accession in 2007), we studied the major pollinator groups-wild bees, hoverflies and butterflies. Landscape scale effects of semi-natural habitats, land cover diversity, the effects of heterogeneity and woody vegetation cover and on-site flower resources were tested on pollinator communities in traditionally managed arable fields and grasslands. Our results showed: (i) semi-natural habitats at the landscape scale have a positive effect on most pollinators, especially in the case of low heterogeneity of the direct vicinity of the studied sites; (ii) both arable fields and grasslands hold abundant flower resources, thus both land use types are important in sustaining pollinator communities; (iii) thus, pollinator conservation can rely even on arable fields under traditional management regime. This has an indirect message that the tiny flower margins around large intensive fields in west Europe can be insufficient conservation measures to restore pollinator communities at the landscape scale, as this is still far the baseline of necessary flower resources. This hypothesis needs further study, which includes more traditional landscapes providing baseline, and exploration of other factors behind the lower than baseline level biodiversity values of fields under agri-environmental schemes (AES)

    Space Use of Bumblebees (Bombus spp.) Revealed by Radio-Tracking

    Get PDF
    Hagen M, Wikelski M, Kissling WD. Space Use of Bumblebees (Bombus spp.) Revealed by Radio-Tracking. PLoS ONE. 2011;6(5): e19997.Background: Accurate estimates of movement behavior and distances travelled by animals are difficult to obtain, especially for small-bodied insects where transmitter weights have prevented the use of radio-tracking. Methodology/Principal Findings: Here, we report the first successful use of micro radio telemetry to track flight distances and space use of bumblebees. Using ground surveys and Cessna overflights in a Central European rural landscape mosaic we obtained maximum flight distances of 2.5 km, 1.9 km and 1.3 km for Bombus terrestris (workers), Bombus ruderatus (worker), and Bombus hortorum (young queens), respectively. Bumblebee individuals used large areas (0.25-43.53 ha) within one or a few days. Habitat analyses of one B. hortorum queen at the landscape scale indicated that gardens within villages were used more often than expected from habitat availability. Detailed movement trajectories of this individual revealed that prominent landscape structures (e. g. trees) and flower patches were repeatedly visited. However, we also observed long (i.e. >45 min) resting periods between flights (B. hortorum) and differences in flower-handling between bumblebees with and without transmitters (B. terrestris) suggesting that the current weight of transmitters (200 mg) may still impose significant energetic costs on the insects. Conclusions/Significance: Spatio-temporal movements of bumblebees can now be tracked with telemetry methods. Our measured flight distances exceed many previous estimates of bumblebee foraging ranges and suggest that travelling long distances to food resources may be common. However, even the smallest currently available transmitters still appear to compromise flower handling performance and cause an increase in resting behavior of bees. Future reductions of transmitter mass and size could open up new avenues for quantifying landscape-scale space use of insect pollinators and could provide novel insights into the behavior and requirements of bumblebees during critical life stages, e. g. when searching for mates, nest locations or hibernation sites
    corecore