88 research outputs found

    Temperature suppression of STM-induced desorption of hydrogen on Si(100) surfaces

    Full text link
    The temperature dependence of hydrogen (H) desorption from Si(100) H-terminated surfaces by a scanning tunneling microscope (STM) is reported for negative sample bias. It is found that the STM induced H desorption rate (RR) decreases several orders of magnitude when the substrate temperature is increased from 300 K to 610 K. This is most noticeable at a bias voltage of -7 V where RR decreases by a factor of ~200 for a temperature change of 80 K, whilst it only decreases by a factor of ~3 at -5 V upon the same temperature change. The experimental data can be explained by desorption due to vibrational heating by inelastic scattering via a hole resonance. This theory predicts a weak suppression of desorption with increasing temperature due to a decreasing vibrational lifetime, and a strong bias dependent suppression due to a temperature dependent lifetime of the hole resonance.Comment: 5 pages, RevTeX, epsf files. Accepted for surface science letter

    First principles theory of inelastic currents in a scanning tunneling microscope

    Get PDF
    A first principles theory of inelastic tunneling between a model probe tip and an atom adsorbed on a surface is presented, extending the elastic tunneling theory of Tersoff and Hamann. The inelastic current is proportional to the change in the local density of states at the center of the tip due to the addition of the adsorbate. We use the theory to investigate the vibrational heating of an adsorbate below an STM tip. We calculate the desorption rate of H from Si(100)-H(2×\times1) as function of the sample bias and tunnel current, and find excellent agreement with recent experimental data.Comment: 5 pages, RevTeX, epsf file

    STM induced hydrogen desorption via a hole resonance

    Get PDF
    We report STM-induced desorption of H from Si(100)-H(2×1\times1) at negative sample bias. The desorption rate exhibits a power-law dependence on current and a maximum desorption rate at -7 V. The desorption is explained by vibrational heating of H due to inelastic scattering of tunneling holes with the Si-H 5σ\sigma hole resonance. The dependence of desorption rate on current and bias is analyzed using a novel approach for calculating inelastic scattering, which includes the effect of the electric field between tip and sample. We show that the maximum desorption rate at -7 V is due to a maximum fraction of inelastically scattered electrons at the onset of the field emission regime.Comment: 4 pages, 4 figures. To appear in Phys. Rev. Let

    Memory properties and charge effect study in Si nanocrystals by scanning capacitance microscopy and spectroscopy

    Get PDF
    In this letter, isolated Si nanocrystal has been formed by dewetting process with a thin silicon dioxide layer on top. Scanning capacitance microscopy and spectroscopy were used to study the memory properties and charge effect in the Si nanocrystal in ambient temperature. The retention time of trapped charges injected by different direct current (DC) bias were evaluated and compared. By ramp process, strong hysteresis window was observed. The DC spectra curve shift direction and distance was observed differently for quantitative measurements. Holes or electrons can be separately injected into these Si-ncs and the capacitance changes caused by these trapped charges can be easily detected by scanning capacitance microscopy/spectroscopy at the nanometer scale. This study is very useful for nanocrystal charge trap memory application

    Towards the fabrication of phosphorus qubits for a silicon quantum computer

    Full text link
    The quest to build a quantum computer has been inspired by the recognition of the formidable computational power such a device could offer. In particular silicon-based proposals, using the nuclear or electron spin of dopants as qubits, are attractive due to the long spin relaxation times involved, their scalability, and the ease of integration with existing silicon technology. Fabrication of such devices however requires atomic scale manipulation - an immense technological challenge. We demonstrate that it is possible to fabricate an atomically-precise linear array of single phosphorus bearing molecules on a silicon surface with the required dimensions for the fabrication of a silicon-based quantum computer. We also discuss strategies for the encapsulation of these phosphorus atoms by subsequent silicon crystal growth.Comment: To Appear in Phys. Rev. B Rapid Comm. 5 pages, 5 color figure
    • …
    corecore