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Abstract Investigation of stall induced vibrations has shown that the actual value of
the edgewise blade frequency relative to the coupled, global rotor tilt-yaw frequencies is
important for development of the vibrations. They develop more easily if the blade frequency
is close to one of the rotor tilt-yaw frequencies referred to common coordinates. This
observation indicates that an important coupling exists between the blade edgewise modes
and the global rotor modes. The presented work aims at providing insight into the physics
of this coupling by use of simple models, which take into account the effects believed to be
most important in the considered state of operation. We assume that the dominating inertia
force on the blades originates from the edgewise vibration. The resulting inertia force at the
hub, which turns out to be a force rotating in the rotor plane with the edgewise frequency,
is then considered as the forcing on the supporting structure, i.e. the main shaft, the nacelle
frame and the tower. A four degrees of freedom model of the rotor and the supporting
structure is used to illustrate the global rotor tilt-yaw mode shapes during operation. A
mathematical model for the work performed by the inertia force from the blade vibration on
the hub movement shows, how energy might be exchanged between the structural elements.
In addition, full aeroelastic calculations are used to support and extend the conclusions from
the simple models, when the complex, real wind turbine structure is considered. The in-plane
inertia force describes an elliptical path in the rotor plane, and we denote the corresponding
blade deformation local blade whirl. Likewise, the hub moves along an elliptical orbit, when
the rotor tilt-yaw modes are excited, and we denote this movement global rotor whirl. Using
these terms our concern is the interaction between local blade whirl and global rotor whirl.
The models are used to illustrate the findings through examples. It is concluded that not only
should the local blade whirl frequencies and the global rotor whirl frequencies be separated
as much as possible, but certain frequency intervals should be avoided as well. Although
the work is inspired by analysis on stall regulated wind turbines, the dynamic principles are
equally valid for turbines with any type of regulation.
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Preface

Results are presented from structural dynamics research, which has been carried out at Risg
within the program Aeroelastic Design. The work is a contribution to one of the tasks in the
EFP-97 project Program for forskning i aeroelasticitet. The specific task is concerned with

¢ Identification of main parameters for load reduction.

The research is inspired by previous work in projects concerned with investigation of
stall induced vibrations. These projects are the national EFP-96 project Kantsvingninger i
stall and the international EC Joule-1II project Prediction of Dynamic Loads and Induced
Vibrations in Stall [1].

A summary of the results from the present work is included in the final report for the EFP-97
project, Risg-R-1066(DA), Forskning i Aeroelasticitet. EFP-97 Slutrapport [2].
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1 Introduction

In connection with investigation of stall induced edgewise blade vibrations [1] on three bladed
stall regulated wind turbines it has been observed that the actual values of the rotor tilt-
yaw frequencies relative to the edgewise blade frequency are important for the development
of the stall induced vibrations. Measurements and simulations with aeroelastic codes show
that the edgewise vibrations develop more easily if the blade frequency is close to either of
the rotor tilt-yaw frequencies, assuming that the frequencies are referenced to a common
coordinate system.

This observation indicates that an important coupling exists between the blade vibration
and the global rotor tilt-yaw modes. The present report describes the physical nature of this
coupling partly by use of simple models and partly by use of full aeroelastic calculations. The
simple models consider only the dynamic effects, which we believe are the most dominating,
and neglect wind and gravity loads. Basically, the rotor and the rotor support are considered
as two separate structures, which interact at the rotor hub. The aeroelastic calculations use
models, which have a very detailed representation of both loads and structural elements,
and the calculations are capable of simulating the behaviour of the real turbine with good
accuracy.

In the simple models we agsume that the blades vibrate in the natural edgewise mode shapes
and that the inertia force from this movement dominates the total inertia force. The force
from the blades as seen by the shaft will be the resulting inertia force from the edgewise
vibration. The aim is to investigate the response of the coupled wind turbine structure, when
it is excited by this force.

A simple model of the wind turbine with only four degrees of freedom at the tower top
and the main bearing support is applied to illustrate the global behaviour of the wind
turbine during operation. In this model all the rotating parts, including the blades, are
considered completely rigid. The included degrees of freedom approximate the dominating
degrees of freedom for the turbine structure, when the tilt-yaw mode shapes are excited
during operation. It turns out that the rotor center in these modes moves along an elliptical
path.

A mathematical model is used to account for the energy exchange between the blade
vibrations and the global rotor vibrations. The model calculates the work performed by
the inertia force from the blade vibration on the rotor hub, when the blade vibration takes
place simultaneously with the tilt-yaw mode shape deformation.

The findings and the conclusions from the simple models are supported by general aeroelastic
calculations, which are believed to have an adequate representation of the degrees of freedom
relevant for a real wind turbine. In the aeroelastic code the different degrees of freedom
can be locked, and by doing so the simulations can be used to support the conclusions
drawn from the results obtained with the simple models mentioned above, as the simulations
approach the behaviour of the simple model. Furthermore, the use of a full aeroelastic code
for identification of the global rotor tilt-yaw modes for a flexible turbine during operation is
demonstrated.

Risg-R-1067(EN) 5



An example turbine

Throughout the presented work we use numerical examples to show the order of magnitude
of the different deformations and loads. For this purpose an example wind turbine is used,
which represents the typical Danish, 3-bladed, stall regulated, 500 kW type with 19.0 m
blades. This turbine is further used to illustrate the mode shapes, which participate in the
dynamic phenomena under investigation. The main data for the turbine are presented in
Section 2.

Initially, the natural frequencies and the mode shapes are calculated for the whole turbine
at stand still without simplifying assumptions. The frequencies are listed and the associated
mode shapes described in Section 2.1, where also three fundamental mode shapes involved
in the dynamic interaction phenomenon are shown and described.

The presented mode shape calculations and the later time simulations are carried out by
use of the Risg aeroelastic code HawC described in detail in [3] and in overview in [4]. The
HawC model is believed to have a satisfactory representation of the mode shapes involved.

In-plane inertia force — local blade whirl

By assuming that the blades vibrate in the edgewise mode shapes, we illustrate how an
inertia force develops in the rotor plane giving rise to a rotating moment at the tower top
and at the main bearing. This moment might interact with the rotor tilt-yaw mode shapes,
when certain conditions are present regarding the actual frequencies of the involved modes.

In Section 3.1 the derivation of the in-plane inertia force, resulting from the vibration in the
edgewise mode shapes, is presented. The appearance of the force in both rotating coordinates
(fixed in the rotor) and stationary coordinates (fixed in the tower) is shown. The force rotates
with the blade edgewise frequency and describes an elliptical orbit in the rotating coordinates
(see Figure 3.4). Elliptical orbits are typical deformation patterns, e.g. for flexible shafts in
different turbomachines, and the term whirl is used for this type of motion. Therefore, we
choose to use the term local blade whirl for the blade deformations corresponding to the
rotating force, and local as opposed to the term global whirl, which we intend to use for the
movement of the hub during excitation of the rotor tilt-yaw modes.

The force can be decomposed in two counter-rotating components, which both describe a
circular orbit, and both rotate with the blade frequency. This decomposition is presented in
Section 3.2.

Theory is presented in Section 3.3, demonstrating how a simulated or a measured response
can be decomposed using the presented methods, which until this point assume that the
blade deformation in each of the mode shapes is known a priori.

Rotor tilt-yaw mode shapes — global rotor whirl

A simple four degrees of freedom model of the wind turbine is presented in Section 4. The
purpose of this model is to show, how the frequencies of the tilt-yaw mode shapes change
with the rotational speed of the rotor and to illustrate these mode shapes during operation.
In the model the rotating parts, including the blades, are considered completely rigid.

Basically, the four degrees of freedom model takes into account the flexibility of the rotor
support. Two springs are located at the tower top and two at the main bearing support. Each
spring has a rotational degree of freedom, allowing the rotating shaft to change direction in
space, corresponding to a movement of the rotor center in a vertical plane. This movement of
the shaft during operation approximates the movement in the rotor tilt-yaw mode shapes for
a flexible turbine. The homogeneous equations of motion are solved explicitly with respect
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to natural frequencies, and the influence of rotational speed on the frequencies due to change
of gyroscopic forces is illustrated.

When one of the rotor tilt-yaw modes are excited, the movement of the rotor center in the
vertical plane follows an elliptical path (see Figure 4.1), and based on the same ideas as
above for the in-plane force we choose to denote this movement global rotor whirl. Using
these terms our concern is the interaction between local blade whirl and global rotor whirl.

Examples demonstrating the methods

The models and the theory are used in examples to illustrate the findings throughout
the sections, where the theory is presented. The examples are based on an imaginary
3-bladed, stall regulated, 500 kW wind turbine equipped with 19.0 m blades. Further, general
aeroelastic simulations are used to illustrate the behaviour of a wind turbine in normal stalled
operation. The results are presented in Section 5.

Mathematical model for exchange of energy

The interaction between the structural components is rather complex for a real, flexible
turbine, and the interpretation of the results obtained by full aeroelastic calculations is rather
difficult. This interpretation is supported by a mathematical model, which accounts for the
work performed by the in-plane inertia force due to blade vibration on the hub movement,
when the global rotor whirl modes are excited. This model is presented in Section 6.

Global rotor whirl modes for a flexible turbine

In a design situation it might be valuable, if the frequencies involved in the present coupling
phenomenon can be predicted, as this gives the designer the opportunity to control — to some
extent — the final design frequencies and the dynamic behaviour. As shown in Section 2.1
the frequencies can be determined at stand still by solving the equations of motion in the
aeroelastic model. At present, this is not possible for a rotating wind turbine, and as the
frequencies might change considerably compared to the stand still case, other methods
must be looked for. In general, the blade edgewise frequency is easy to determine, for
instance from the power spectral density of the blade root bending moment during operation.
The determination of the global rotor whirl frequencies is less straightforward. The simple
four degrees of freedom model mentioned above is not well suited for determination of
the global whirl frequencies for a real, flexible turbine, because the simplification involves
approximations to the real structure. A method based on simulation with an aeroelastic
code is presented in Section 7. The method makes use of external, harmonic excitation, and
the frequencies are determined from the response.

Risg-R-1067(EN) 7
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2 The example wind turbine

In the examples presented in later sections an imaginary wind turbine is applied. It is
assumed to represent the typical 3-bladed, Danish, stall-regulated concept, but the described
dynamic principles are equally valid for turbines with any type of power regulation.

The main data for the example wind turbine, relevant for the analysis below, are listed
in Table 2.1. The actual distributed stiffnesses and masses are not shown, except the blade
mass, which enters the later calculations. The blade mass distribution is shown in Figure 2.1.

Still, the structural data applied in the aeroelastic model are chosen to give realistic natural
frequencies and mode shapes. The calculated frequencies and mode shapes at stand still are
presented in Section 2.1.

Table 2.1. Main data for the example 500 kW turbine with 19.0 m blades.

| Component | Parameter | Value
Rotor Number of blades 3
Rotor diameter 41.0 m
Hub height 40.0 m
Rotor overhang 2.00 m
Rotor speed at rated power, 1P, Q ~ | 30.0 rpm, 0.5 Hz, 3.142 rad/sec
Blade mass distribution.
800
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2 600 \
g 500
c
: h
= 400
c
: |
5 300 \
o
@ 200
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100
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0 w\e\e\
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Figure 2.1. Blade mass distribution.
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2.1 Mode shapes and natural frequencies

The simulated natural frequencies at stand still are listed in Table 2.1. The Sil case covers
the basic turbine, and the Si2 case covers a turbine with stiffened shaft. The latter is used
to demonstrate the influence of structural modifications on the global rotor whirl modes. In
the table short descriptions of the actual modes are given as well.

Especially two modes are of importance for edgewise vibrations, namely node number 7 and
mode number 8. Mode number 7 is shown in Figure 2.2. In this mode one blade, in the figure
denoted blade 1, is practically at rest, and the other two, blade 2 and blade 3, are vibrating
in counter-phage with identical amplitude. Mode number 8 is shown in Figure 2.3. Here one
blade, blade 1, is vibrating in counter-phase with the other two, blade 2 and blade 3, which
have half the amplitude of blade 1. Both mode 7 and 8 can be characterized as isolated rotor
modes, in the sense that practically no coupling to the shaft torsional degree of freedom is
present, as the inertia forces on the blades are dynamically in equilibrium with respect to
moment about the main shaft axis. Still, they are both coupled to the shaft bending modes
and through that to the rotor tilt-yaw modes, as the inertia forces on the blades are not
dynamically balanced in the rotor plane, and a resulting harmonic inertia force will exist in
the rotor plane. This is investigated and described in further detail in Section 3. The two
edgewise modes have almost the same frequency, close to 2.9 Hz. The frequencies are only
different because the rotor tilt and yaw stiffnesses are. If the tilt and the yaw stiffnesses are
identical, the natural frequencies are found as a double root in the characteristic equation,
and any linear combination of mode 7 and mode 8 will then be a mode shape as well. In
this case no preferred directions exist, and any edgewise rotor mode could be described as a
superposition of the two basic modes shown in the figures, possibly including a phase shift
between the two. An appropriate linear combination of the modes shown could for instance
transform the mode shapes to two new, where a different blade would be the blade at rest in
mode 7. But still, only two mode shapes and natural frequencies exist. The fulfillment of the
orthogonality condition for the mode shapes lies behind this statement. When the turbine
rotates, the two frequencies are no longer distinct, and the analysis in Section 3 considers
them as coinciding. The actual deformation vectors for both the edgewise and the flapwise
mode shapes are illustrated by their polar coordinate components in Figure 2.1 as function
of radius.

The rotor tilt and yaw modes — modes 4,5,9 and 10 — are the ones, which might participate
in a coupled vibration with the edgewise blade modes. The 2"¢ yaw mode — mode number 9
—is shown in Figure 2.4. The vertical blade is practically at rest, and the other two vibrate
primarily in a flapwise direction in counter-phase with each other and in counter-phase with
the nacelle.

When the turbine rotates, the frequencies of the tilt and yaw modes are changed compared
to the ones listed in Table 2.1 due to the influence of the inertia forces, for instance
centrifugal and gyroscopic forces, and the modes become tilt-yaw modes, referring to the
fact that deformations in both tilt and yaw direction are usually present in a rotating mode,
corresponding to one whirl frequency. The influence of the gyroscopic forces is described in
detail in Section 4 by use of the simple four degrees of freedom model with infinitely stiff
shaft and blades.

The rotor tilt and yaw modes will combine to what we in the present context choose to denote
global rotor whirl modes, where the rotor center describes an elliptical orbit in the stationary
coordinates (see Figure 4.1). The elliptical orbit can be decomposed in two circular orbits.
One of the circular orbits is travelled by the rotor center in the same direction as the rotor
rotates — we denote this component either forward or progressive whirl — and the other is
travelled in the opposite direction — we denote this component either backward or retrograde
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whirl. Accordingly, the resulting elliptical orbit might be travelled in forward or backward
direction, depending on the actual size of the circular components. The basic principles of
decomposing an elliptical orbit in its circular components are described in further detail in
Section 3.

In Section 4 examples of global rotor whirl frequencies obtained by the simple four degree
of freedom model for typical turbines with 19 m blades are shown in Figures 4.2 and 4.3.
In this case it turns out that the lower of the 1%¢ tilt-yaw whirl frequencies decreases with
rotor speed, and that the whirl direction is backward. Accordingly, the higher of the 1%
tilt-yaw whirl frequencies increases with rotor speed, and the whirl direction is forward. The
same characteristics are observed for 2"¢ tilt-yaw whirl frequencies as well, although their
dependency on the rotor speed is less pronounced. The identification of the global whirl
modes is further addressed in Section 7, where a general aeroelastic code is used to identify
the modes.

Table 2.1. Simulated natural frequencies at stand still. The Sil case covers the basic turbine
and the Si2 case covers a turbine with stiffened shaft.

Case Sil: | Case Si2:
Simulated | Simulated
Frequency | frequency | frequency
number [Hz] [Hz] Description of mode
1 0.760 0.760 | Tower across wind
2 0.807 0.808 | Tower along wind
3 0.905 0.905 | Shaft torsion
4 1.363 1.462 | 1% rotor yaw
5 1.575 1.711 | 1% rotor tilt
6 1.852 1.854 | 1%t blade flapwise
7 2.916 2.922 | 1% blade edgewise, Figure 2.2
8 2.964 2.973 | 1% blade edgewise, Figure 2.3
9 3.668 3.756 | 2"¢ rotor yaw, Figure 2.4
10 4.360 4.965 | 2" rotor tilt
06 1st edgewise and flapwise mode shapes. 0 Vibration direction.
l Edgewise. <— Edgewise. <—
05 Flapwise. --+---- _ -2 Flapwise: ===
_ g 4
E 04 A =
g ,f % -6 M‘/ e
% /*,/ g Ea— Jﬁ*#r*‘#d_r_* A
S 02 i g 10
0.1 } S
0 JM -14
0 5 10 15 20 0 5 10 15 20
Radius [m] Radius [m]

Figure 2.1. Mode shape vector size (left) and vibration direction angle, Orp (right). The angle
is defined in Figure 2.5. The flapwise direction is plotted with an offset of ABgp = —90°.
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Mode shape 7 : 2.916 Hz.

z-deformation Blade 1 Negative deformation. ——
Positive deformation. -8—
Undeformed rotor. ——

50

e 120
e ! g 10%
20 15 10 5 0 5 410 115750 o5 50 7 y-deformation

x-deformation

259

Figure 2.2. Edgewise mode shape number 7.

Mode shape 8 : 2.964 Hz.

z-deformation Blade 1 Negative deformation. ——
Positive deformation. -8—
Undeformed rotor. ——

50

40

i Blade 2
30 Blade 3

20

10

w220

0L ! g 10t
25720 15 10 5 0 -5-10 45 30 55 < 5~ y-deformation
x-deformation

Figure 2.3. Edgewise mode shape number 8.
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Mode shape 9: 3.668 Hz.

Negative deformation. ——
_ Positive deformation. =—
z-deformation Undeformed rotor. —

S0
40
30
20
10

20

. ion -5
x-deformation >10

-15

5
0 y-deformation

Figure 2.4. 2™ rotor yaw mode shape. The moment components, M, and M,, are used for
excitation of the global rotor whirl modes as presented in Section 7. The sign of the plot azxis
units is opposite to the orientation of the coordinates of the stationary tower coordinates,
(z7,yr,27). See also Figure 4.1 in Section 4 for o definition of coordinate systems.

XR
— L ____—— Rotor plane

Figure 2.5. Definition of vibration direction angle, 0gp.
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3 Local blade whirl

Aeroelastic calculations and measurements on full scale wind turbines in operation show
that there is a significant coupling between the local edgewise blade modes (also denoted
the local blade whirl modes) and the global rotor whirl modes. Our definition of the global
rotor whirl modes is presented in Section 4, where a simple four degrees of freedom model is
used to illustrate examples. For instance, a change of component stiffness that results in a
change of the separation between the values of the edgewise frequencies and the global whirl
frequencies can change the edgewise vibration response significantly. From the calculations
on the example wind turbine presented later in Section 5 it is observed that the closer the
274 backward rotor tilt-yaw whirl frequency is to the edgewise blade frequency referenced to
the stationary coordinates, w, + (2, the higher the edgewise vibration level will be. Change of
the rotor whirl frequency towards higher values results in decreased vibration level. Typical
values of the global rotor whirl frequencies are presented in Section 4, for example in
Figure 4.3. As we show later in Section 6 by considering the energy exchange, not only
the separation between the frequencies matters, but also their relative values are important,
i.e. whether a rotor whirl frequency is below or above a blade edgewise whirl frequency in
common reference coordinates. In the examples only the 2"¢ rotor whirl frequencies seems
to be close enough to the edgewise frequency to be important, but in general the 1%¢ rotor
whirl frequencies should be considered as well.

The coupling between global rotor whirl modes and edgewise blade modes is complex,
primarily due to flexibility of the structural elements, which are involved in the rotating
modes. This flexibility has to be represented in a model, if the modeling of inertia forces
— including gyroscopic forces — should be adequate. This is believed to be properly taken
care of in the applied HawC aeroelastic code. However, we would like to get some better
understanding of the coupling phenomenon by looking at a simple model of the blade inertia
forces, which are believed to be the more important ones for the coupling. This model is
presented below.

3.1 In-plane blade inertia force resulting from edgewise
vibration
The deformations in the fundamental edgewise blade modes, i.e. modes 7 and 8 shown in

Figures 2.2 and 2.3, respectively, are described by the orthogonal and normalized mode
shape vectors

vB1,7(r) arr (1)
{er(N} =9 ¢B2r(r) p=vB(r)q ax p=¢s(r){ (3.1)
vB3,7(r) asy - %
and
9031,8(7") a1g \/lé
{es(r)} =1 ¢B2s(r) p=vp(r)S as ¢ =vp(r) —% (3.2)
¢B3,8(r) asg - %

Here, @p(r) is the in-plane projection of the edgewise curve in Figure 2.1, r is the actual
blade radius, index Bi refers to blade number ¢ and a;; is denoted the mode weighting factor
for blade number i in mode number j. The mode shapes are also illustrated in Figure 3.1.
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I — —
Blade 1 R R
R
Mode shape 8

Figure 3.1. Relative tip deformations in the two basic edgewise mode shapes.

Vibration in the mode shapes are described by harmonic normal coordinates
q7(t) } { ug7 Sin (wet + v7) }
t)} = = . , 3.3
{a®)} { qs(t) uog Sin (wet + ¥8) (3.3)

where w, is the edgewise blade frequency, ¢ is the time and the phases of the modes are
denoted 77 and ~g, respectively.

These normal coordinates result in the blade deformations

w0y =4 e b= ) 1oy [{ 7O} i { 7O Y

t
UB3s QS( )

which implicitly defines the modal matrix [¢].

Using the actually chosen parameter values from Table 3.1 results in the blade tip deflections
shown in Figure 3.2, covering one period of the edgewise vibration.

Table 3.1. Parameter values for presented examples.

Parameter Actual value
Uo7 Y2 m=1.4142m
Uos Y8 m=1.2247m
¥z 0.0°
8 45.0°
W=We =wy | 3.0 Hz = 18.850 rad/sec
Q0 0.5 Hz = 3.142 rad/sec
eB(R) 0.2
mpg 48.2 kg

16 Risg-R-1067(EN)



Blade edgewise deformation.
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Figure 3.2. Blade tip deformations in edgewise direction.

As mentioned in Section 2.1 there is virtually no coupling between the edgewise blade modes
and the shaft torsion, as the blades — according to the mode definitions in Equations 3.1
and 3.2 — are obviously dynamically in balance with respect to moment from the inertia
force about an axis through the rotor center perpendicular to the rotor plane.

However, the resulting inertia force in the rotor plane is not zero, and a harmonic varying
in-plane force is transferred to the main shaft. This force can interact with the global rotor
whirl modes, i.e. exchange energy with these modes.

To illustrate this situation, the mass distribution along the blade is considered as well. The
in-plane force due to vibration in the rotor plane arising from the associated inertia force is
derived with reference to Figure 3.3.

In the local blade coordinate systems (zp;,yBi,28:) only the force perpendicular to the
blade axis is considered, i.e. the force in the zp;-direction. The mass, dm, of an infinitesimal
radial blade length, dr, is considered

dm = m(r)dr , (3.5)

where m(r) is the mass per unit length of the blade, shown in Figure 2.1.

According to d’Alembert’s principle, the infinitesimal inertia force yields
dF{;B (r,t) = pp(r)ai;wiug; sin(wet + v;)m(r)dr , (3.6)
where the index ¢ refers to the blade number, and j refers to the mode. The a;; terms are

the factors from the right side of Equations 3.1 and 3.2.

Agsuming small in-plane rotations along the blade, the transformations of the local inertia
force to the rotor coordinates can be linearized corresponding to assuming that the inertia
force is perpendicular to the blade axis also in the deformed state. This means that the
inertia force can be integrated along the blade and transformed afterwards.
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Blade 3 g O
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Figure 3.3. Coordinate systems involved in calculation of the resulting in-plane inertia force
due to pure edgewise vibration.

The integrated inertia force in the zg;-direction yields

z B
57 ()

R
l/ ¥B (r)m(r)drl aijwiug; sin(wet + ;)
0
= mpaijwiug; sin(wet + ;) , (3.7)
which defines the mass
R
mpg :/ ea(rym(r)dr . (3.8)
0

The transformation matrices transforming vectors from local blade coordinates,
(zBi,YyBi, 2Bi), t0 the rotor coordinates, (zgr,yr, 2r), are

1 00
Tpir]=10 1 0 R (3.9)
L0 0 1
oo
[Ter]=| 0 1 0 and (3.10)
_¥3 o _1
L — 2 2
o f
[Tesgl=| 0 1 0 (3.11)
V3 _1
L2 0 2

Selecting only the terms from these transformation matrices, which influence the zg-
components, the transformations from all three blades are collected in one transformation
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equation considering only the in-plane force components
FR 1 -3 -1 a1j
2 .
{ F::é } = l 0 5 ¥ asj pmpwiug;sin(wet +7;) - (3.12)

Inserting the a;;-values for the two modes gives the in-plane force components. For mode 7
we get

F:ﬁ 0
= 3 mpw2ugy sin(wet + 1) , (3.13)

R
Fz7

2

and for mode 8

EIN

and combined

{ FER }: ﬁmbz{ uos Sin(wet + vs) } - (3.15)

FER 2 —ugy7 sin(wet + v7)

ol

} mpwiugs sin(wet +7s) , (3.14)

Basically, this force describes an elliptical orbit in the co-rotating coordinates, which might
collapse to a straight line if the phase angles are numerically equal. Using the values from
Table 3.1 we get the result presented in Figure 3.4. The force, indicated by the filled arrow,
rotates in the same direction as the rotor — as illustrated by the non-filled arrows in the plot
— with the frequency we, which we also denote the local blade whirl frequency, wiy-

Inertia force. Rotor coordinates.
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Figure 8.4. In-plane inertia force in rotating coordinates. The non-filled arrows indicate the
rotation direction of the force.
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Transformation to stationary tower coordinates is obtained by the following transformation
matrices, covering either 3 or 2 dimensions:

cos(i) 0 sin(Qf)
[Trr] = 0 1 0 » [Thi] =
—sin(Qt) 0 cos()

cos()  sin(Q¢)

—sin(QF) cos(Qt) |’ (3.16)

which have been derived according to the definitions in Figure 3.6. Neglecting the
yp-component, which is zero, i.e. using the right matrix from Equation 3.16, the
transformation results in the force vector in stationary coordinates

FT V3 2 [ cos(Qt)  sin(Qt) ] { uog Sin(wet + 7vs) }
FT —sin(Qt)  cos(Qt) —g7 sin(wet + v7)

( — ug7 [cos((we — )t + v7) — cos((we + D)t + 7))
V3| Hueslsin(e — @)t +9s) — sin((we + )t + )] )

T g e (= wor [sin((we — D)t +77) — sin((we + D)t +7)]
— ugg [cos((we — D)t + v5) — cos((we + Q)E + 7s)] )

This result shows that the edgewise frequency is experienced as two in the stationary
coordinates, namely w, + ). Using the parameter values from Table 3.1 gives the rotating
force in stationary coordinates corresponding to Equation 3.17 as shown in Figure 3.5 by the
filled arrow. The left plot in the figure shows one complete cycle of the edgewise vibration,
and the right plot covers one complete rotor revolution. The non-filled arrows in the figures
show the rotation direction of the force.

(3.17)

Inertia force. Tower coordinates. Inertia force. Tower coordinates.
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Figure 3.5. In-plane inertia force in stationary coordinates due to deformation in edgewise
mode shapes. The left plot covers one period of the edgewise vibration, and the right plot
covers one complete rotor revolution. The non-filled arrows show the rotation direction of
the force.
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Blade 3
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Blade 1

Figure 3.6. Rotating (R) and stationary (T') coordinate systems.

3.2 Decomposing elliptical orbits in circular orbits

The in-plane inertia force shown in Figure 3.4 describes an elliptical orbit in the (xg,2zr)-
plane. The force vector can be composed of two counter-rotating vectors with constant size.
The two vectors may have either

o different size, which gives the elliptical orbit,
e same size, which degenerates the ellipse to a straight line, or

¢ one of the counter-rotating vectors may be zero, which gives a circular orbit.

In the present section we show the decomposition of the force vector in such two vectors, and
further we derive the associated components of the blade modes. The purpose is to provide
a description that in some aspects supports the understanding of the phenomena, and the
decomposition may for instance be useful, when measurements are analyzed.

The parameters and the variables generally used for description of an ellipse are shown in
the left plot in Figure 3.7. In the figure the resulting in-plane force is denoted {F;}, the
major semi-axis is denoted a and the minor semi-axis is denoted b. The angle from the
zgr-axis to the major semi-axis is v, and the angle from the zg-axis to the rotating vector is
wet + 7v,. The elliptical orbit can also be considered to be composed of two circular orbits
— one corresponding to a vector with forward or progressive rotation, {Fp}, and the other
corresponding to a vector with backward or retrograde rotation, {F,}, as shown in the right
plot in Figure 3.7.

The following relations are valid for these descriptions of the ellipses

E, = |{F} ; Fr=|{F:}| ; (vector size) (3.18)

« = F,+F, ; b=F,—F, ; (3.19)
1

v = 50w —Er) (3.20)

e = Yrp - (3.21)

The resulting vector rotation is progressive, when Fj, > F,. and retrograde, when F,. > Fj,.
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Figure 3.7. Orbits of in-plane inertia force in rotating coordinates.

The projection of the two circular orbits on the (zg,zg)-axis gives the in-plane force vector
expressed by the progressive and retrograde components

{ FR }: [ sin(wet +Yrp) = Sin(wet + Yry) ] { Fy } _ (3.22)

FE cos(wet + Yrp)  cOS(wet + YFr) F,

By combination of Equations 3.15 and 3.22, the progressive and the retrograde components
can be expressed by the amplitudes and the phases of the basic edgewise mode shapes.
Equating coeflicients to sin(w,t) and cos(w,t) terms yields the following four equations with
four unknowns, Fy, Fy, vrp and yry:

E, cos(yrp) + Frcos(yry) = —‘/Tgmbzum sin(vy7)
Fysin(yryp) + Frsin(yry) = émbfum cos(y7) (3.23)
F,sin(yrp) — Fpsin(yr,) = */Tgmbzuos sin(ys) [’ '
Fy cos(yrp) — Frcos(yrr) = émbf uos €o8(7Ys)
giving the solutions
V3 :
F,= Tmbz udy + uds + 2ugrus sin(ys — ) , (3.24)
V3 )
F, = Tmbz ud; + udg — 2ugrugs sin(ys — y7) , (3.25)
YFp = arctan [ Uor CO,S 7 thos SIn 7 ] and (3.26)
—ug7 SIny7 + Ugg COS g
YFr = arctan [ Uor CO,S 7 Uos S8 ] . (3.27)
—Ug7 81N Y7 — Upg COS Vg
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Transforming the in-plane force from Equation 3.22 to stationary T-coordinates yields

[ sin[(we + )t +ypp] —sin[(we — Q) t+ vrr] F,
B |:COS|:(w€+Q)t+’Y§p:| cos[(we—Q)t+’Y§T] ]{ F. } (3.28)

By use of the example data from Table 3.1 the progressive and the retrograde circular
components are calculated and shown in Figure 3.8.

Inertia force. Circular components.

25
Progressive (W + Q) ——

20 Retrograde (g =€) ===
15 f X\\
10 /
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FI [kN]
(2]
T

IR

-10 x

-15

-20
-30 -20 -10 0 10 20 30
Fl [kN]

Figure 3.8. Forward (progressive) and backward (retrograde) whirl components of the in-plane
inertia force. The plot azxes refer to the T-coordinates. The appearance of the components
in R-coordinates is the same, but referenced to these coordinates the frequency of both
components is W, = Wy, the local blade whirl frequency.

Accordingly, the blade deformations corresponding to progressive and retrograde in-plane
forces, respectively, can be found by resolving each of them with respect to the basic mode

shapes, {¢7} and {ps}.

Pure progressive in-plane force is obtained with the same amplitude of the two modes, up,
and a phase difference of g, —y7, = 7§, which can be observed from Equations 3.24 and 3.25.
Correspondingly, pure retrograde in-plane force is obtained by the common mode amplitude
ur, and phase difference vg, — 7 = —73.

The constant phase difference implies that only one phase is needed for description of each
rotation direction. We choose 7y7p = Yup and vz, = 7y in the derivations below.

The corresponding harmonic normal coordinates are found from Equation 3.3. The
progressive coordinates are expressed by

(0} :{ 75 (%) }:{ up $in (wet + Yup) } , (3.20)

gsp(t) Up CO8 (Wet + Yup)
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and the retrograde coordinates by

{qT(t)}:{ arr(t) }:{ Up sin (Wt + Yur) } . (3:30)

gsr(t) Uy €08 (Wt + Yor)

The total blade deformations are obtained by combining these equations, which yields

i)} = [er) es) | (1@} +{a®})

Up Sin(wet + Yup) + ur sin(wet + Yur)
= . 31
Ler(r) es(r) ] { up €O8(wet + Yup) — Uy COS(Wet + Yur) (3:31)

Equating the coefficients to the sin(w.t) and the cos(wet) terms from Equations 3.3, 3.4
and 3.31 yields the following four equations with four unknowns, up, ur, Yyp and yr,
equivalent to Equations 3.23:

up Sin(yup) + upsin(yur) = ugy sin(7yr)

Up COS(7up) + up co8(Yur) = ug7 cos(7yr) (3.32)
Up COS(7up) — Up COS(Yur) = ugg sin(7g) ’ )

Up Sin(Yup) — Ursin(yur) = —Uoscos(7s)

giving the solutions

1 .
up = 5\/u(2)7 + ug + 2ugruos sin(ys — vr) , (3.33)
1 /5 :
U, = 5\/%7 + ugg — 2ugruos sin(ys — 1) , (3.34)
Yup = arctan [u07 ST Y7 — tlos C?S 78] and (3.35)
U7 COS y7 + Upg SIN Yg
ur = arctan [u07 sin 7 + ugg COs ’Ys] (3.36)
wr U7 COS Y7 — Ugg SinYgd )

It is observed that the rotating force components from Equations 3.24 and 3.25 can be
expressed by the progressive and the retrograde mode amplitudes

F, = ?mbzuI, and (3.37)
F. = ?mbzur . (3.38)

Considering the deformations corresponding to progressive and retrograde resolutions
separately shows that the blades are vibrating with the same amplitudes, but with different
phases.

From Equation 3.31 the following is obtained by rewriting the trigonometric functions and
ingerting the mode shape components from Equations 3.1 and 3.2

3 cos(wet + 7up)
{up} = uppn (r)\/; cos(wet + Yup + 4?”) and (3.39)

27

cos(wet + Yup + %)
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cos(wet + Yur)
{ur} = uron (r)(—\/g) cos(wet + yur + &) 9 - (3.40)

cos(wet + Yur + )

We denote these blade deformations local blade whirl, and refer them to the rotation direction
as forward and backward (or alternatively progressive and retrograde), respectively.

By use of the example data from Table 3.1 the progressive and the retrograde deformation
components are calculated and shown in Figure 3.9.

Local blade whirl. Progressive. Local blade whirl. Retrograde.
0.3 0.3
Blade 1. — Blade 1. —
Blade 2. - Blade 2. -
0.2 i »Blade 3. 0.2 Blade 3. -
- E
@ 0.1 5 0.1
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& - )
o
! £ 0
E 5
o ; \ o
£ S/ y E ~_
0.1 f i X 0.1
02 .. I Il 0.2
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0.35

Figure 3.9. Progressive and retrograde components of edgewise blade deformations.

3.3 Decomposing the blade response for an operating
turbine

In the previous example we assumed that the normal coordinates were known. If we, on the
other hand, know the edgewise blade response for all three blades — either as deformations
or as moments — we are able to determine the normal coordinates corresponding to this
response approximately and subsequently to apply the decomposition presented above. The
principle is outlined below, and an example for a turbine operating in free wind is presented.
The response for an operating turbine is varying due to the time varying loads, and the local
blade whirl components are time varying, accordingly.

Assuming that the fundamental edgewise mode shapes dominate the response, the blade
deformation in the edgewise direction can be determined from the deformation in one radial
blade station — say at the tip, i.e. at radius r = R, meaning that {u(R,t)} is known — or from
the moment — say the moment at the blade root, {Mpo(t)} — assuming that the moment is
proportional to the deformation

Mpi1o (t) UB1g (R7 t)
{Mpo} =< Mpa(t) p =Kum{ur(R,t)} =Kum{ up2a(R,t) p , (3.41)
MBpa3o(t) upse (R, t)

where K, is the proportionality factor equivalent to a stiffness with dimension [Nm/m].

Ag the edgewise deformations are influenced by the aerodynamic driving force and the 1P
gravity force, we choose to remove the mean deformation and the harmonic 1P deformation
per rotor revolution.
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The total response is expressed as the sum
{ur(R, )} = {um(R)} + {urp (B, 8)} + {u.(R, )} , (3.42)

where
{um(R)} is the mean deformation calculated over one complete revolution,

{u1p(R,t)} is the deformation due to the gravity force and the 1P aero-force
and

{ue(R,t)} is the deformation due to the vibration in the fundamental
edgewise mode shape and the higher order modes.

When the fundamental edgewise mode shapes dominate {u,}, this vector can be resolved in
its components with good approximation according to the theory presented in the previous
Sections 3.1 and 3.2.

Calculation for one complete rotor revolution gives the mean

Tp
wmmzﬁl{m@mw, (3.43)

where Tp = %’T is the period for one revolution.

Correspondingly, the 1P contribution is expressed by the truncated Fourier series

ax bl
{wap(R,t)} = ag pcos(QU) +< by »sin(Q)] , (3.44)
as bs

where the coefficients are calculated from

ai 2 Tp

Gy = {ur(R,t)} cos(Qt)dt (3.45)
TP 0

a3

and

by 9 [Tr

by p=— {ur(R,t)}sin(Qt)dt . (3.46)

bs Tr Jo

Having determined the mean and the 1P component, the remainder of the response, which
we expect to be dominated by the vibration in the fundamental edgewise mode shapes, can
be found from

{ue(R,8)} = {ur(R, 1)} = {um(R)} — {w1p(R, 1)} , (3.47)

which we expand in the modal components according to Equation 3.4

uBlw(R, t)
B0} ={ upna(B) 3= [ {er®} {os®) [ 7O 1 (3.48)
u;w(R,t) | o ’ ]{ as(2) }
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Solving for the normal coordinates we get

{ Z;Eg } B 90231(11')

where T denotes transposition, and the modal vectors are the rows of the transposed modal

matrix, [p]T.

{er(R)}”
{os(R)}"

{ue(R,8)} , (3.49)

Now, the theory from the previous Sections 3.1 and 3.2 can be used for decomposition and
analysis. Examples are presented in Section 5.
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4 Global rotor whirl

The investigation of stall induced edgewise blade vibrations for a three bladed wind turbine
reveals that the coupled modes of the turbine might be of great importance for developing
and sustaining the vibrations. During the vibration the local rotor modes, which involve
the two basic edgewise blade bending modes described in Section 2.1 for a three bladed
turbine as modes 7 and 8, give rise to an in-plane harmonic inertia force with the blade
edgewise natural frequency, we. This force might interact with the global rotor whirl modes.
To provide a better basis for understanding this phenomenon the global rotor whirl modes
are described in the present section by use of a simple wind turbine model [5] with only four
degrees of freedom (DOF's) roughly corresponding to tilt and yaw rotations at the tower top
and at the main bearing. In this model the shaft, the hub and the blades are considered
infinitely stiff, and the rotor moves as a rigid body. For a real turbine the flexibility of
the shaft, the hub and the blades modify these modes significantly, but the simple model
represents the basic behaviour of the global rotor whirl modes with good approximation.

The global rotor whirl modes are related to the 1% and 2™ rotor tilt and yaw modes as
identified at stand still for the three bladed example turbine in Section 2.1 and listed in
Table 2.1 as modes 4, 5, 9 and 10. The present simplified model aims at describing these
modes and how they depend on the rotational speed of the rotor, Q.

The simple 4-DOF model is illustrated in Figure 4.1.

Main bearing

Forward whirl

Backward whirl

. Blade 1

I, 4y

Figure 4.1. Simple 4-DOF model of wind turbine.

The model considers only the influence of the tower through the rotations in the tilt and the
yaw directions at the tower top, i.e. the rotation 8,7 about the zp-axis and the rotation 8,1
about the zp-axis, respectively. A concentrated mass moment of inertia, I, representing the
tower and the nacelle is assigned to these DOFs. The corresponding rotational stiffnesses
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belonging to these DOF's are denoted k.1 and k.7, respectively. The remaining two degrees of
freedom represent the elastic rotations in the tilt and yaw directions of the main bearing, ,n
and 6., about the axes xn and zpy, respectively. The corresponding rotational stiffnesses
are denoted kyn and k,n, respectively. No concentrated mass moment of inertia is assigned
to these bearing rotations, as the inertia is assumed small compared to the mass moment of
inertia of the rotor. Thus, all the deformations take place in a stationary frame of reference,
and the equations of motion can be derived without the periodic azimuthal dependency. This
approximation might be rather rough for a real turbine, because the deformations of the
shaft, the hub and the blades usually have a significant influence on the considered vibration
modes. However, the model is well suited for the purpose of illustrating the basic behaviour
of the global rotor whirl modes, which we have in mind.

The sign of the rotations are chosen according to a right-hand screw convention, meaning
that the sign is positive, when the equivalent rotation of a right-hand screw moves it in the
positive direction of the actual coordinate axis.

In summary, the model degrees of freedom are:
1. 8,7, rotation about the tower top zp-axis, corresponding to rotor tilt rotation.
2. 8,7, rotation about the tower top zp-axis, corresponding to rotor yaw rotation.
3. 6, rotation about the bearing xy-axis, corresponding to rotor tilt rotation.
4. 8,n, rotation about the bearing zy-axis, corresponding to rotor yaw rotation.

The deformations are assumed small, so that the rotations can be added as vectors, and the
total rotations of the rotor yg-axis, which coincides with the rotor shaft, become:

ewS = ewT + ng (41)
and
02:5 = ezT + gzN . (42)

This four DOF system has four natural frequencies, and the corresponding mode shapes are
characterized by the phase of the rotations. For instance, the phase of the rotations for the
two mode shapes, which involve tiltwise rotation, are

1. 8,7 and 6, in phase and

2. 8,1 and 8, in counter-phase.

The mode with the rotations in phase has the lower frequency of the two.

The next step in establishing the model is the derivation of the equations of motion for the
turbine with the rotor rotating with constant angular velocity, . The most important part
of this task is the derivation of the inertia forces on the rotor, which finally provides us with
the mass matrix and the gyroscopic matrix. We go through the details of this derivation. We
apply Newton’s method for calculation of the inertia force on an infinitesimal mass element
at radius r on a blade, e.g. blade number i:

dm = m (r,0grp;)dr, (4.3)

where
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m (r,0gp;) is the mass per unit length at radius r for blade number i and

OrB; is the angular position in the rotor plane of blade number 4,
measured from the zg-axis of the (zg, yg, 2r)-coordinate system,
which is fixed in the rotor, with the zg-axis coinciding with the
axis of blade 1, zp;.

The mass element is shown in Figure 4.1.

The acceleration is derived as the second derivative with respect to time of the position vector
to the mass element. Assuming that the distance between the origo of the T-coordinate
system and the origo of the N-coordinate system — denoted h in Figure 4.1 — is zero, the
position in stationary T-coordinates yields

0 rsin (rs;)
{r"} = [Twr] -5 ¢ +[Trn] 0
0 rcos (OrBi)
= [Twr] [{rN} + [Trn]{rE:}] (4.4)

which implicitly defines the local position vectors {rY } and {r%;}. The upper vector index
identifies the actual coordinate system, to which the vector components are referenced, and
the lower index is just a part of the vector name. In Equation 4.4 s is the horizontal distance
from the center-line of the tower to the center of the rotor and

1 0.5 0
[TNT] - 02:5 1 _ewS (45)
0 0.5 1

is a linearized transformation matrix, which transforms a vector from nacelle-coordinates
(N) to tower-coordinates (1), and

cos(@ng) O sin(Ong)
Trn] = 0 1 0 (4.6)
—sin (QNR) 0 cos (QNR)

is a transformation matrix, which transforms a vector from rotor-coordinates (R) to nacelle-
coordinates (N).

Differentiation of the position vector with respect to time — here expressed by the operator

[£] =[] gives the velocity of the mass element

(7} = )| (e x (4R} + Taw {751}

+ [Trn] ({ng} )] . (4.7)

After linearization the rotation vectors are derived to

éwT + éwN
{oNr}=q O (4.8)
ezT + gzN
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and
0
{wﬁN} = Q , (4.9)

where ) is the constant angular velocity of the rotor.

Finally, derivation of the velocity vector with respect to time yields the acceleration of the
mass element. The acceleration is transformed to rotor coordinates (upper index R) merely
to simplify the expression

) = (vl {wdin}) [([TNR] {r}) x (el (i) + (i}
+2{ulin} x i} |

+{win} % ({wﬁ’N} X {rﬁi})
+( [TNR] {W%T}) X ( [Tne]{rN} + {rBl}) , (4.10)

where [Twg] is the transposed of [Trn].

The moment from the inertia forces with respect to the rotation degrees of freedom are
obtained by integration over the three blades. For example for the rotations in the tower
coordinates (T') we get

(M7} = Z [/ {#7} x ( = [Twr] [Tan] {77} m (r, QRBZ))dr] . (4.11)

Finally, the linearized equations of motion are obtained by requiring moment equilibrium at
each degree of freedom between inertia forces, elastic forces and external forces, resulting in
the equation

(M){8} +1c1{6} + (K] {6} = {F} (4.12)

with the mass matrix

IT+IR+S2MR 0 IR+S2MR 0
0 IT+IR+S2MR 0 IR+S2MR
M| = .
[ ] I +s>Mg 0 I+ s2Mg 0 ’ (4.13)
0 IR+S2MR 0 IR+S2MR
the gyroscopic matrix
0o -QJ 0 -QJ
o-| % 0 e o Wi

0o -QJ 0 -QJ |~
Q 0 QJ 0
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the stiffness matrix

ker O 0 0
0 ko O 0
K] = z 4.15
%] 0 0 kv 0 |7 (4.15)
0 0 0 k.~
the vector with the elastic angular deformations
ewT
oy=1{ % (4.16)
ng
gzN
and the vector with moments resulting from external forces
MwT
M.
F} = # , 4.17
Fy=4 W (417)
MzN
where
Ip is the mass moment of inertia of the rotor about an axis in the
rotor plane, e.g. zg,
J =2Ig is the mass moment of inertia of the rotor about an axis

perpendicular to the rotor plane, i.e. yg, and

Mg is the total mass of the rotor.

Now, assuming that the solutions to Equation 4.12 are harmonic with angular frequency w

0w T0

{6} = ng](; exp™? = {y} exp™? (4.18)

0zN0

and that the external forces are zero, {F'} = {0}, the natural frequencies are determined
from the equation

(— w? [M] + iw [C] + [K]) {60} exp™t = {0} , (4.19)

where ¢ is the imaginary unit.

The characteristic equation (the determinant of the matrix sum in the left parenthesis in
Equation 4.19) is derived and the roots of this equation are found to give the natural
frequencies, w = wy, = wyy, which we identify as the global rotor whirl frequencies

Det (IT, In, 82 Mg, J,Q, kyr, ko, Kon s kzN,wn) —0. (4.20)

The determinant expression is rather complex (a polynomium with w, in the 8" power)
and the solutions are most conveniently found by numerical methods. If we assume that the
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stiffnesses are symmetric, i.e. kyp = k7 = kp and ky;y = k.nv = kn, we get the somewhat
reduced determinant expression

Det(w,) = [IT (Ip + 8*Mg)wt — Ir JQW?
—(Trkw + (Ip + 5*Mg) (kr + k) )w?
+JQ (b + kn) wy + kaN] x
[IT(IB + 82 Mg)w? + IpJOw?
- (ITkN + (I + 8*Mg) (br + kn) )wi

—JQ (kr + kn) wn + kaN] . (4.21)

4.1 Examples

Below we show examples of solution of the characteristic equation. We choose values for
structural parameters typical for a wind turbine with 19 m blades. Two configurations are
chosen with different stiffnesses in the rotational DOFs. The actual values of the structural
parameters are listed in Table 4.1.

Table 4.1. Structural parameters for the example turbines.

Variable Units | Example 1 | Example 2

Ir kgm? | 2.510° 2.510°
In kgm? | 1.910° 1.910°
s?Mg kgm? 4.310* 4.310*
keT Nm/rad 1.610% 6.0107
sz Nm/rad 0-70><kwT 0-75><kwT
ksn Nm/rad 1.4107 4.0107
k.n Nm/rad kxn kxn

In Figure 4.2 the natural frequencies for Example 1 are shown as function of rotor speed.
The two lowest frequencies correspond to the 1%¢ tilt-yaw mode shapes. It is observed that
the natural frequencies depend considerably on the rotational speed, due to the gyroscopic
forces. The yaw and tilt rotations are uncoupled at stand still, but when the turbine rotates,
the two deformations couple due to the gyroscopic forces. The degree of coupling depends on
how much the direction of the rotor shaft — the direction of the ygr-axis — is changed due to
the elastic deformations. In general, the coupling results in deformations, which makes the
rotor center follow an elliptical orbit as indicated in Figure 4.1. In the present context we
denote this motion of the rotor global rotor whirl. The orbit is characterized by the direction
in which the rotor center travels the elliptical path. Depending on the actual stiffnesses the
direction might be either forward or backward. Forward whirl means that the elliptical orbit
is travelled in the same direction as the turbine rotates, i.e. in the same direction as €2,
and vice versa for backward whirl. The actual directions for the example are indicated in
Figure 4.2. The direction of the whirl motion has been found by solving the equations of
motion in the time domain by applying a harmonic excitation at the actual natural frequency,
as demonstrated in Section 7.

34 Risg-R-1067(EN)



The two highest frequencies for Example 1 correspond to the 27¢ tilt-yaw mode shapes.
In the present case they depend only very little on the rotor speed, which means that the
deformations at the tower top and at the main bearing are almost identical, but in counter-
phase, so that the direction of the rotor shaft is practically unchanged during the vibration.

The natural frequencies for Example 2 are shown in Figure 4.3. The changed stiffnesses make
the 1%¢ tilt-yaw modes less dependent on the rotor speed, while the 2"¢ tilt-yaw modes are
now more influenced by the rotor speed, when compared to Example 1.

The global whirl frequencies might be found for an actual wind turbine by an aeroelastic
code without introducing simplifications, e.g. by carrying out simulations with harmonic
forces or moments, which are chosen with size, frequencies and orientation, so that the whirl
modes are excited. The frequencies might be guessed by some trial and error process, and
frequency bands can be investigated by letting the excitation frequency vary slowly during
the simulation period. Examples of excitation and identification of the global whirl modes
by use of a general aeroelastic code are presented in Section 7.

Rotor global whirl frequencies. Example 1.
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Figure 4.2. Natural frequencies for Example 1 as function of rotor speed.

Rotor global whirl frequencies. Example 2.
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Figure 4.3. Natural frequencies for Example 2 as function of rotor speed.
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5 Example decomposition of normal
operation response

Below examples are presented using the theory from Section 3. The response from the
example 500 kW turbine with 19.0 m blades is considered for two configurations of the
turbine. We analyze 256 seconds of simulated response at 23 m/s for the basic turbine
(case Sil) and for a configuration with increased shaft stiffness (case Si2), respectively.
Time traces of the edgewise blade root bending moments for the two cases are presented in
Figure 5.1. At the chosen wind speed the turbine operates in deep stall. In the basic case
severe edgewise vibrations develop, while these vibrations are limited to a much lower level
in the case with stiffer shaft.

As the analyses are based on the edgewise blade root moments, the proportionality factor
Kyy from Equation 3.41 is involved in the calculations. The actual value of Ky is
approximately 1200 kNm/m.

Below the results for the two cases are presented in paired figures, where the left figure
column covers the basic case, and the right figure column covers the configuration with
increased shaft stiffness. Figure 5.2 shows 1 second of the time trace for all three blade tip
deflections. Figure 5.3 shows the power spectral densities of the deflections. The edgewise
vibration at 2.9 Hz dominates the response. The 1P frequency is approximately 0.5 Hz. In
Figure 5.4 the time trace for blade 1 is shown for 2.5 rotor revolutions. The 1P component,
calculated according to Equation 3.44, is shown in the figure. The discontinuities in the 1P
curve are due to the averaging per rotor revolution and basically caused by the time varying
1P aero-load.

The plots in Figure 5.5 show the local blade whirl deformation components calculated
according to Equations 3.33 and 3.34, respectively. They vary with time due to the time
varying edgewise vibration. The whirl components are calculated for each complete cycle
of the edgewise vibration, assuming that the vibration is harmonic during this period. A
Fourier series expansion equivalent to the one for the 1P component in Equation 3.44 is
applied, only, the period is now Tp = 2—” It is observed that the backward (or retrograde)
component is dominating. The correspondlng, calculated in-plane inertia force is shown in
the plots in Figure 5.6 for the time period 190-200 seconds. The arrows indicate that the
rotation direction is backwards.

The tower top tilt and yaw bending moments for the same 190-200 seconds time period are
shown in the plots in Figure 5.7, where the curves show the trace of the rotating moment
at the tower top. The regular global rotor whirl pattern is clearly observed for the basic
wind turbine configuration (left plot), whereas the whirl pattern for the configuration with
increased shaft stiffness (right plot) is more chaotic, indicating that no dominating vibration
mode is excited in this case. A 5 seconds period of the time traces of these moments are
shown in Figure 5.8.

In Figure 5.9 the power spectral densities of the tower top moments are shown. The
dominating rotating moment at the tower top shown in the left plot in Figure 5.7 has
the frequency w, — Q ~ 2.4 Hz in accordance with the highest peak in the power spectrum.
This frequency corresponds to the frequency of the dominating retrograde local blade whirl
component, which acts as a forced excitation on the rotor whirl, and from investigations
presented in Section 7 it turns out that this frequency is not a rotor whirl frequency. In
the power spectrum the we + Q ~ 3.4 Hz frequency is identified as well. This frequency is
identical with the frequency of the progressive blade whirl component, and the investigations
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in Section 7 show that it is very close to the 2" backward rotor whirl frequency as well.
Both these frequencies seem to be essential for the coupling between local blade whirl and
global rotor whirl, as confirmed by theory presented in the following Section 6, where the
energy exchange between the whirl modes is investigated by use of an expression for work.
This investigation shows that the actual values of the blade whirl frequencies relative to the
rotor whirl frequencies decide the direction of the energy exchange, i.e. whether the forces
associated with the blade whirl modes perform work on the rotor whirl modes or vice versa.
In the present case a possible explanation is that energy is transferred from the progressive
blade whirl mode, which ceases to vibrate, via the 27¢ backward rotor whirl mode to the
retrograde blade whirl mode, which shows increased vibration level. The vibration levels of
the blade whirl modes are most clearly seen in Figure 5.5.

As shown in the right plot in Figure 5.9 the response frequencies in the area around 3.4 Hz
have changed for the configuration with stiffened shaft, obviously enough to prevent initiation
of the global rotor whirl and the violent edgewise vibration. A possible interpretation based
on the energy exchange theory is that the favourable conditions for energy exchange are
no longer present due to the changed rotor whirl frequencies, and the energy is no longer
concentrated on the retrograde blade whirl component.

The 2"¢ rotor tilt and yaw frequencies at stand still are found from Table 2.1 to be
3.67 Hz and 4.36 Hz, respectively, for the original configuration, and 3.76 Hz and 4.97 Hz,
respectively, for the stiffened configuration. These frequencies are changed during rotation
as illustrated in Section 4 by the simple model. The subject is further pursued in Section 7,
where a method for determining the rotor whirl frequencies by use of a general aeroelastic
program is demonstrated. Here the relevant 2"¢ backward rotor whirl frequency is found to
approximately 3.4 Hz for case Sil and 3.6 Hz for case Si2, respectively.

1500 Edgewise blade root bending moment. 23.0 m/s. 1500 Edgewise blade root bending moment. 23.0 m/s.
Blade 1. Sim. Sil. — Blade 1. Sim. Si2. —
1000 1000
500 500
B €
g g
s 2O AR
i) i)
> >
= =
-500 -500
-1000 -1000
-1500 L -1500
0 50 100 150 200 250 0 50 100 150 200 250
Time [sec] Time [sec]

Figure 5.1. Simulated edgewise blade root moments. Left: Basic case Sil shows dominating,
increasing vibration with the edgewise frequency. Right: Stiffened shaft case Si2 shows limited
vibration.
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Figure 5.6. Components of local blade-whirl force. The arrows show the rotation direction.
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6 Illustration of exchange of energy

The explanation for some of the observed response patterns in the previous sections might
be found by looking at the energy exchange between local blade whirl and global rotor whirl.
We do so in the present section by expressing the work performed by the in-plane inertia
force — due to edgewise blade vibrations — on the global rotor whirl motion.

When a global whirl mode is excited, the movement of the hub in the vertical plane describes
basically an elliptical path, as shown in Figure 4.1 in Section 4. This movement is described
by the following vector with reference to stationary tower T-coordinates:

Ug | _ [ sin(Wgwt +pw)  —sin(Wgwt + yrw) Upw
L} ) e

co8(Wgwt + Ypw)  COS(Wgwt + Yrw) Up

where the principles of resolving in the progressive and the retrograde components have been
applied, as described previously for the force in Section 3.2. In this equation

Upyw i8S the progressive displacement component,
Upy  the retrograde displacement component,
Ypw  the phase of the progressive component,
Yry  the phase of the retrograde component and
wgyw  is the global rotor whirl frequency.

The velocity vector of the rotor center movement is obtained by differentiation of the
displacement with respect to time:

-T _
{ u;w }ngw[ cos(Wgwt + Ypuw) cos(Wgwt + Yrw) ] { Upuw } - 6.2)
)

w = sin(wgwt + Ypuw) —SiD(Wyuwt + Yrw) Upyw

The in-plane inertia force vector associated with the edgewise vibration is repeated from
Equation 3.28. In stationary T-coordinates it was found to:

FwT = Sin[(we+9)t+7 p] —Sin[(we—ﬂ)t-i-’)/ r] E,
{FZT} a [Cos[(we+ﬂ)t+7§p:| cos[(we_g)t_i_,),;] ]{ F. } (3.28)

The meaning of the symbols is revived:

B, is the progressive force component,

F, the retrograde force component,

Y¥rp  the phase of the progressive component,
~rr  the phase of the retrograde component,
We the edgewise blade frequency and

Q is the rotor rotation frequency.

The work per unit time (the power) performed by the in-plane inertia force on the hub —
and through that on the global rotor whirl — is obtained by the scalar product of the force
and the hub transverse velocity according to:
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r T (7
v- R
= — Wew (Fp cos[(we + Q)t + yrp] + Fr cos[(we — D)t + ")/FT])
(upw sinfwguwt + Ypw] + Urw Sin[wget + fyrw])
+ W (F,, sin[(we + Q)¢ + yrp] — Fr sin[(we — Q)t + m])

(upw COS[Wywt + Ypw] — Urw COS[Wqwt + ’er]) . (6.3)

Finally, this power expression is integrated over a time period corresponding to n cycles of
the global rotor whirl motion:

p— 12T (6.4)
Waw

and a function for the work performed by the in-plane inertia force on the global whirl
motion is obtained. The integration gives the function

n2mw

Waw _:
W(FpaFr77Fp77Fraupwaurwa’)’pwa’)’rwawgwaweaQan) =  Wwdt
t=0

Waw
(Q — wgw — wWe)(Q + wgw — we) (! — wyyy + we) (2 + wWge + we)

X

3 2 2 3 2 2 2
Foupy (Q + Qwyw — Qg — Wiy — Vwe — 2Qgywe — wWywe — wg

2 3 we + 2
+ Wepw, + W €08 [Ypw — YFp] — COS |Ypw — YFp — N27

Wow

+ Fpy ( -0+ Qugy + Wiy, —wiy, + Qwe — 20wguwe + why,we + Q)

2 3 we + €2
+ wow; — W ) | €08 [Vrw + YFp] — COS | Yrw + YFp + 027

Wow

+ Frttpy ( -0+ Qo + W}y — w5y, — Qwe + 20wguwe — whywe + Q)

we — €
+ wgwwf + wf) (cos [Yrw — YFr] — cOS [fym, — YFr — 2T ])

Wow

+ Fruipy (93 + QPwgy — Qi — wiy, + Pwe + 20wguwe + w),we — Qw?

e

we — N
+ wgwwf - wf) (cos [Ypw + YFr] — COS [fypw +vFr + 27— ]) ] . (6.5)

Waw

Apparently, the work function has two singularities in the frequency range of interest. One
for wyy = @ — w. and another for wgy, = @ + w.. However, they both turn out to be
removable.
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The energy exchange is investigated for a range of cases with different assumptions. These
examples are chosen to illustrate the full scale simulations in Section 5, and especially the
influence of the presence of either one or both of the in-plane force components, ¥, and F7,
and of either one or both of the rotor whirl components, 4y, and u,,. The parameters for
the selected cases are listed in Table 6.1.

Table 6.1. Parameters for work expression examples.

Para- Figures

meter | Units 6.2 I 6.3 | 6.4 I 6.5 I 6.6

E, [kN] 10.00 | 0.00 || 10.00 | 0.00 || 10.00 | 0.00 || 10.00 | 0.00 || 10.00 | 0.00
F, [kN] 0.00 | 10.00 0.00 | 10.00 0.00 | 10.00 0.00 | 10.00 0.00 | 10.00
YFp [°] 0.00 0.00 0.00 0.00 0.00

YEr [°] 0.00 0.00 0.00 0.00 0.00

Upw [m] 0.15 0.15 0.15 0.15 0.00

Upqy [m] 0.25 0.25 0.25 0.00 0.25

Ypw [°] 0.00 0.00 0.00 0.00 0.00

Yrw [°] 0.00 0.00 0.00 0.00 0.00
Waw [Hz) Variable Variable Variable Variable Variable
We [Hz] 2.90 2.90 2.90 2.90 2.90

Q [Hz) 0.50 0.50 0.50 0.50 0.50

n [cycles] 1 5 20 5 5

In all the examples the phase angles are assumed to be zero. The blade edgewise frequency
is constant, w, = 2.9 Hz, and so is the rotor rotational speed, Q = 0.5 Hz. The global rotor
whirl frequency, wgy, is varied, and the influence of the number of rotor whirl integration
cycles is illustrated. In the figures below the results are plotted in pairs, such that one curve
shows the result with only the progressive in-plane force, F,, present, and the other curve
shows the results with only the retrograde component, F., present. For such one pair of
results all other parameters are kept identical.

For the three first double examples — with reference to Figures 6.2-6.4 — both the progressive
and the retrograde components of the rotor whirl motion are present (up, and u,,), and
the movement of the rotor center during the whirl motion follows an elliptical path in the
retrograde direction as shown in Figure 6.1. This is similar to the movement pattern, which
would be expected for the 2"¢ rotor whirl mode at approximately 3.4 Hz for the basic
example in Section 5.

The energy exchange for the chosen cases are calculated by use of the work function in
Equation 6.5. The results are shown in Figures 6.2-6.6 as function of global rotor whirl
frequency. When the work is positive it means that the in-plane inertia force performs work
on the global rotor whirl, and when it is negative, the energy is transferred from the rotor
whirl to the edgewise vibration.

The results of the three first double cases — presented in Figures 6.2-6.4 — show that
the progressive in-plane force component performs work on the rotor whirl below
Wgw = we + 1 = 3.4 Hz, and that the rotor whirl performs work on the edgewise vibration
above this frequency. The same is valid for the retrograde in-plane component, only the
sign changes at wgy = we — ! = 2.4 Hz. Between these two frequencies the two in-plane
local blade whirl components can exchange energy via the global rotor whirl mode, such
that the energy is transferred from the progressive to the retrograde component of the local
blade whirl, and the vibration corresponding to the retrograde component is amplified.
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Figure 6.1. Movement of the rotor center corresponding to global rotor whirl in the examples.
The arrows show the direction of rotation.

Agsuming that the involved global whirl frequency in the basic case in Section 5 is just below
Wgw = we + £ = 3.4 Hz, this is a probable explanation for the results shown in the left plot in
Figure 5.5, where the retrograde blade vibration component increases. The right plot in the
figure, corresponding to the configuration with stiffened shaft, shows much less pronounced
increase of the retrograde component, probably due to the changed energy exchange at the
corresponding higher frequency above wy,, = we + @ = 3.4 Hz. In Section 7 it is shown that
the frequency is increased to approximately 3.6 Hz.

It is observed that the major influence of increasing the number of integration cycles, n, is
that the work peaks are moved towards the frequencies, where the work function changes
sign, wgyw = 2.4 Hz and wgy, = 3.4 Hz. The levels of the peaks are almost unchanged.

The results of the last two parameter settings from Table 6.1 presented in Figures 6.5
and 6.6 show that the progressive in-plane inertia force component can only perform work
on or interact with the progressive rotor whirl component and vice versa.
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Figure 6.2. Energy exchange between blade edgewise vibration and rotor whirl as function of
rotor whirl frequency, wg.,. The energy is the average of 1 complete rotor whirl cycle.
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Figure 6.3. Energy exchange between blade edgewise vibration and rotor whirl as function of
rotor whirl frequency, wgy. The energy is the average of 5 complete rotor whirl cycles.
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Figure 6.4. Energy exchange between blade edgewise vibration and rotor whirl as function of
rotor whirl frequency, wgy. The energy is the average of 20 complete rotor whirl cycles.
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Figure 6.5. Energy exchange between blade edgewise vibration and rotor whirl as function
of rotor whirl frequency, wgy. Only the progressive global rotor whirl component, Uy, is
present. The energy is the average of 5 complete rotor whirl cycles.
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Figure 6.6. Energy exchange between blade edgewise vibration and rotor whirl as function of
rotor whirl frequency, wgy. Only the retrograde global rotor whirl component, ur,,, is present.
The energy is the average of 5 complete rotor whirl cycles.
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7 Identification of global whirl modes
by excitation

The influence of the wind turbine global structural dynamics on the edgewise blade vibration
phenomena is illustrated for instance in Section 5 in Figure 5.1. In this figure the simulated
edgewise blade root moments of two different wind turbine configurations are shown. The
turbine is operating in stall at 23 m/s. It is seen that one of the configurations is subject to
severe edgewise vibrations. The difference between the two cases is different shaft stiffnesses.

As pointed out previously, the actual values of the local blade whirl frequencies and the
global rotor whirl frequencies are important for the interaction between the two vibrations
— if the frequencies are close to each other, a significant energy exchange might take place,
and both vibrations might develop more easily than otherwise. Further, the investigation of
energy exchange in the previous section indicates that the edgewise blade vibration is more
likely developed, if the rotor whirl frequency lies between the blade whirl frequencies as seen
in the stationary frame of reference. In a design situation it might therefore be of interest
to gain some knowledge about their actual values in order to try to avoid the coupling by
proper design choices.

Normally, the blade frequency is easy to determine, as it usually can be detected very clearly
from the power spectral densities of normal operation response. Further, it will be rather
close to the non-rotating blade frequency, which can be determined from an eigenvalue
analysis. The opposite is the case for the rotor whirl frequencies. They are difficult to detect
directly from the power spectra of normal operation response. Primarily, because they are
less pronounced in the spectra and often in the vicinity of other frequencies. An eigenvalue
analysis of the non-rotating turbine is not directly applicable, as the rotating frequencies
might deviate significantly from the stand-still frequencies due to gyroscopic forces as shown
in Section 4.

Below we demonstrate a method for finding the approximate values of the rotor whirl
frequencies. The method is based on excitation during operation with a known harmonic
moment at the tower top.

Determination of global rotor whirl frequencies

The global rotor whirl frequencies can be approximately determined by use of an aeroelastic
code. During operation the whirl modes can be excited by use of harmonic forces or moments,
and analysis of the response, e.g. by calculation of the power spectral densities, can provide
the frequency values. We demonstrate a method, where the whirl modes are excited by a
harmonic moment at the tower top. The frequency of the moment, f,(t), is varied linearly
during the calculation period, T'. The variation of the excitation frequency around a chosen
center frequency, f., follows the expression

t
fe(t) = fe (1 -p+ sz) , (7.1)
where p is the percentage the variable frequency lies below the center frequency at time

t = 0 sec and above at t = T sec.

The applied excitation is equivalent to the inherent excitation by the harmonic force from
the local blade whirl described in Section 3, but it is obtained by applying a time varying
moment at the tower top as shown in Figure 2.4, where the moment components, M, and M,
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vary harmonically with the amplitude My and with the specified frequency, f., according to

M, (t) Mo cos (27ch [(1 —p)t+p§])
w0 ) ) , (7.2)
M, (t) + My sin (27rfc [(1 —-p)t +P§D

which results in a constant size moment rotating in the vertical plane with the time
dependent frequency f.(¢). The moment with negative sin-term in the M, component rotates
in the same direction as the rotor, and we denote this direction the forward direction. The
moment with positive sin-term in the M, component rotates in the opposite direction of the
rotor, and this direction is denoted the backward direction. Due to the varying frequency we
refer to the excitations as either forward or backward sweep.

The results of aeroelastic calculations with excitation moments rotating forwards and
backwards, respectively, are shown in the figures below for both the original basic turbine
configuration, Sil, and the configuration with stiffened shaft, Si2. In the calculations My is
2.5 kNm, f. is 3.0 Hz and p is 60%. The gravity and the aerodynamic force are eliminated
in the calculations. The structural damping is increased with a factor 2, resulting in a
structural damping of approximately 5% logarithmic decrement. The plots in the figures
with the results are arranged in pairs, and in general the results from the forward sweep
excitation are in the left plot and the results from the backward sweep excitation are in the
right plot.

Figure 7.1 shows the time traces of the tower top tilt moment, M7, for the original
configuration. The moment is recorded in the stationary tower coordinates. From the plots
the approximate values of the rotor whirl frequencies can be detected in the ranges, where
resonance is observed. At time ¢ = 0 sec the resonance corresponds to the 15 backward whirl
frequency, at time ¢ = 140 sec to the 1% forward whirl frequency, at ¢t = 380 sec to the 27¢
backward frequency and finally at t = 520 sec to the 2"¢ forward frequency. Two peaks are
observed in the range where the 2"¢ backward mode is excited. This indicates that different
coupling patterns exist, probably due to different participation of the blade flapwise modes.

The frequencies can also be detected from the power spectral densities of the tower top
moments as presented in the plots in Figure 7.3. The approximate values of the whirl
frequencies are:

o 1°¢ backward frequency ~ 1.1 Hz,
o 1%t forward frequency ~ 2.1 Hz,
o 2" backward frequency ~ 3.4 Hz and

e 2" forward frequency ~ 4.3 Hz.

Figures 7.2 and 7.4 show the corresponding time traces and power spectral densities for
the turbine configuration with stiffened shaft. It is observed that all the whirl frequencies
are increased with approximately 0.1-0.2 Hz. Especially the change of the 2"¢ backward
whirl frequency from 3.4 Hz to 3.6 Hz seems to be important for the coupling to the
blade vibrations. The 3.4 Hz is the blade whirl frequency +1P. The change of the whirl
frequency by +0.2 Hz is obviously important enough to reduce the influence from coupling.
As shown in Section 6 probably due to the fact that the progressive and the retrograde blade
whirl components no longer can exchange energy via the rotor whirl mode, when the rotor
whirl frequency is outside the interval delimited by the blade whirl frequencies referred to
stationary coordinates.

52 Risg-R-1067(EN)



The time traces of the tower top response moments for the original configuration are shown as
zy-plots in Figures 7.5 and 7.6 for the case with backward sweep excitation. Figure 7.5 shows
the moments corresponding to 1%t backward and 1%t forward rotor whirl modes, respectively.
Figure 7.6 shows the 2"¢ backward and 2"¢ forward whirl moments, respectively. The arrows
in the plots show the rotation direction. The plots cover 16 sec of the time traces in the
areas where the resonance peaks are detected from the right plot in Figure 7.1.

The plot of the 1% backward whirl mode covers 16 sec from ¢ =0 sec, the 1% forward whirl
16 sec from ¢t =140 sec, the 2" backward whirl 16 sec from ¢ =380 sec and finally the
274 forward whirl 16 sec from ¢ = 520 sec. The arrows in the plots indicate the rotation
direction. By appropriate scaling of the shown moments the corresponding movement of the
rotor center would be obtained with good approximation. So, the plots can also be viewed
as the movement of the rotor center in a vertical plane.

For completeness, the power spectra of the blade root bending moments and the shaft
bending moment are shown in the Figures 7.7-7.13 together with spectra of different
combinations of tower top moments. The shaft bending moment, M;f , is recorded on the
rotating shaft. The tower top moments, tilt M and yaw M, are recorded in the stationary
tower coordinates.

The results show that the response is almost identical, whether the excitation is forward or
backward, yet with the tendency that the whirl modes with the same rotation direction as
the external moment are excited more eagily than the modes with opposite whirl direction.
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Figure 7.1. Case with original shaft stiffness. Tower top tilt moment, MY, during excitation
with harmonic moment with linearly varying frequency ot the tower top. Left: The excitation
moment rotates forwards. Right: The excitation moment rotates backwards.
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Figure 7.2. Case with stiffened shaft. Tower top tilt moment, MT, during excitation with
harmonic moment with linearly varying frequency ot the tower top. Left: The excitation
moment rotates forwards. Right: The excitation moment rotates backwards.
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excitation. Right: Backward excitation.
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Tower top moments. Backward sweep excitation. Tower top moments. Backward sweep excitation.
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Figure 7.6. Tower top moments during excitation with harmonic moment with linearly
varying frequency at the tower top. Tilt moment, ML, and yaw moment, M. Left: 2¢
whirl mode, whirling backwards, 3.4 Hz. Right: 2*? whirl mode, whirling forwards, 4.4 Hz.
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Figure 7.7. Power spectral density of edgewise blade root moment, Mf, for whole 10 minutes
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PSD Tower top and shaft moments. Forward sweep excitation.
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Figure 71.9. Power spectral density of tower top tilt moment, M, and shaft bending moment,
M3, for the whole 10 minutes sweep period. Original shaft stiffness. Left: Forward excitation.

Right: Backward excitation.
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Figure 7.10. Power spectral density of tower top tilt moment, MY, and shaft bending
moment, MS, for the whole 10 minutes sweep period. Stiffened shaft. Left: Forward

excitation. Right: Backward excitation.
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Figure 7.11. Power spectral density of shaft moment, M7, for the whole 10 minutes sweep
period. Left: Forward excitation. Right: Backward excitation.
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PSD Tower top tilt moment. Forward sweep excitation.
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Figure 7.12. Power spectral density of tower top tilt moments, M, for the whole 10 minutes
sweep period. Left: Forward excitation. Right: Backward excitation.
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Figure 7.13. Power spectral density of tower top yaw moments, M, for the whole 10 minutes
sweep period. Left: Forward excitation. Right: Backward excitation.
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8 Conclusion

The interaction between edgewise blade vibrations, local blade whirl, and the deformation
in the rotor tilt-yaw modes during operation, global rotor whirl, has been investigated for
a 3-bladed wind turbine. The objective is to improve the physical understanding of the
interaction by identification of the most important elements of the vibration phenomenon.
The problem is simplified by assuming that the dominating inertia force on the blades
originates from the edgewise vibration, and that this inertia force can be viewed as an
excitation on the yaw and tilt modes.

By applying simple models for the resulting inertia force in the rotor plane and for the
movement of the rotor in the tilt-yaw modes, and by additional full aeroelastic calculations
without simplifications, it has been illustrated, how a coupling between the local edgewise
blade deformations and the global deformations exists. In the presented examples, based
on a typical 3-bladed stall regulated wind turbine, the actual value of the frequency of
the 2"¢ backward rotor whirl mode relative to the edgewise blade frequency referred to
stationary coordinates has proven to be important for the level of the resulting edgewise
blade vibrations. The closer the blade frequency is to the rotor whirl frequency, the easier
the vibrations develop. A change of the rotor whirl frequency of approximately 0.2 Hz
changes the blade vibration significantly.

However, analysis based on expressions for work shows that the interaction is not a simple
resonance phenomenon, as it might seem at first. In the presented examples the energy
from an initiated forward local blade whirl vibration can be transferred to the backward
blade whirl mode via the 27 backward rotor whirl mode, when the rotor whirl frequency
lies between the forward and the backward blade whirl frequencies. With the rotor whirl
frequency outside this range the energy can no longer be exchanged between the two blade
whirl modes, and this seems to be important for the development of the vibrations.

This observation suggests that it should be recommended in a design situation to separate
the blade whirl frequencies and the rotor whirl frequencies as much as possible, but at
the same time the rotor whirl frequency should be kept outside the range limited by the
backward and the forward blade whirl frequencies referred to stationary coordinates.

A method based on external excitation and full aeroelastic calculations is presented and
proposed as a design tool, which can be used for identification of the rotor whirl frequencies.

It should be stressed that the simplified models for whirl interaction are rather arbitrarily
chosen, and the presented description is by no way complete, as the real coupled modes are
rather complex due to flexibilities neglected in the simple models, for instance the flapwise
blade flexibility. Obviously, we might just as well have looked at the problem the other way
around, by showing how an assumed deformation in the tilt-yaw modes would result in an
inertia force on the blades in the rotor plane due to the accelerations at the hub. However, the
same conclusions would have been obtained. The application of full aeroelastic calculations
to support the conclusions is important both in the present work and in a design situation.

Although the presented work is inspired by research on stall regulated wind turbines, and
the examples are based on this turbine type, it should be emphasized that the dynamic
principles are equally valid for turbines with any type of regulation.
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