284 research outputs found

    Salisapiliaceae – a new family of oomycetes from marsh grass litter of southeastern North America

    Get PDF
    Several filamentous oomycete species of the genus Halophytophthora have recently been described from marine environments, mostly from subtropical and tropical ecosystems. During a survey of oomycetes from leaf litter of Spartina alterniflora in salt marshes of southeastern Georgia, isolates of four taxa were recovered that bore similarity to some members of Halophytophthora but were highly divergent from isolates of Halophytophthora s.str. based on a combined sequence analysis of two nuclear loci. In phylogenetic analyses, these isolates were placed basal to a monophyletic group comprised of Pythium of the Pythiaceae and the Peronosporaceae. Sequence and morphology of these taxa diverged from the type species Halophytophthora vesicula, which was placed within the Peronosporaceae with maximum support. As a consequence a new family, the Salisapiliaceae, and a new genus, Salisapilia, are described to accommodate the newly discovered species, along with one species previously classified within Halophytophthora. Morphological features that separate these taxa from Halophytophthora are a smaller hyphal diameter, oospore production, lack of vesicle formation during sporulation, and a plug of hyaline material at the sporangial apex that is displaced during zoospore release. Our findings offer a first glance at the presumably much higher diversity of oomycetes in estuarine environments, of which ecological significance requires further exploration

    Intrasellar rupture of a paraclinoid aneurysm with subarachnoid hemorrhage: usefulness of MR imaging in diagnosis

    Get PDF
    Characterization of paraclinoid aneurysms may be difficult because of the complexity of anatomic structures involved, and differentiation between intradural and extradural lesions is crucial. We report a case of a patient with a unique presentation of a paraclinoid aneurysm with intrasellar hemorrhage in which the presence of intrasellar blood and the relationship of the paraclinoid aneurysmal neck and sac to the dural rings were elegantly demonstrated on MR imaging and were critical in choosing the target lesion for treatment

    A dynamic portal for a community-driven, continuously updated classification of Fungi and fungus-like organisms: outlineoffungi.org

    Get PDF
    The website http://outlineoffungi.org, is launched to provide a continuous up-to-date classification of the kingdom Fungi (including fossil fungi) and fungus-like taxa. This is based on recent publications and on the outline of fungi and fungus-like taxa published recently (Mycosphere 11, 1060-1456, Doi: 10.5943/mycosphere/11/1/8). The website is continuously updated according to latest classification schemes, and will present an important platform for researchers, industries, government officials and other users. Users can provide input about missing genera, new genera, and new data. They will also have the opportunity to express their opinions on classifications with notes published in the 'Notes' section of the webpage following review and editing by the curators and independent experts. The website will provide a system to stay abreast of the continuous changes in fungal classification and provide a general consensus on the systematics of fungi

    Intracranial aneurismal pulsatility as a new individual criterion for rupture risk evaluation: Biomechanical and numerical approach (IRRAs project).

    No full text
    International audienceThis study was designed to highlight by means of numerical simulations, the correlation between aneurism sac pulsatility and the risk of rupture through the mechanical properties of the wall. In accordance to previous work suggesting a correlation between the risk of rupture and the material properties of cerebral aneurysms, twelve fluid-structure interaction (FSI) computations were performed on 12 "patient-specific" cases, corresponding to typical shapes and locations of cerebral aneurysms. The variations of the aneurismal volume during the cardiac cycle (3V) are compared using wall material characteristics of either degraded and non-degraded tissues. Aneurysms were located on 7 different arteries: Middle Cerebral Artery (4), Anterior Cerebral Artery (3), Internal Carotid Artery (1), Vertebral Artery (1), Ophthalmic Artery (1) and Basilar Artery (1). Aneurysms presented different shapes (uniform or multi-lobulated) and diastolic volumes (from 18 to 392 mm3). The pulsatility (3V/V) was significantly larger for a soft aneurismal material (average of 26 %) than for a stiff material (average of 4 %). The difference between 3V, for each condition, was statistically significant: p = 0.005. The difference in aneurismal pulsatility as highlighted in this work might be a relevant patientspecific predictor of aneurysm risk of rupture

    Morphology, phylogeny, and taxonomy of Microthlaspi (Brassicaceae: Coluteocarpeae) and related genera

    Get PDF
    The genus Thlaspi has been variously subdivided since its description by Linnaeus in 1753, but due to similarities in fruit shape several segregates have still not gained broad recognition, despite the fact that they are not directly related to Thlaspi. This applies especially to segregates now considered to belong to the tribe Coluteocarpeae, which includes several well-studied taxa, e.g., Noccaea caerulescens (syn. Thlaspi caerulescens), and the widespread Microthlaspi perfoliatum (syn. Thlaspi perfoliatum). The taxonomy of this tribe is still debated, as a series of detailed monographs on Coluteocarpeae was not published in English and a lack of phylogenetic resolution within this tribe was found in previous studies. The current study presents detailed phylogenetic investigations and a critical review of morphological features, with focus on taxa previously placed in Microthlaspi. Based on one nuclear (ITS) and two chloroplast (matK, trnL-F) loci, four strongly supported major groups were recovered among the Coluteocarpeae genera included, corresponding to Ihsanalshehbazia gen. nov., Friedrichkarlmeyeria gen. nov., Microthlaspi s.str., and Noccaea s.l. In addition, two new species of Microthlaspi, M. sylvarum-cedri sp. nov. and M. mediterraneo-orientale sp. nov., were discovered, which are well supported by both morphological and molecular data. Furthermore, M. erraticum comb. nov. (diploid) and M. perfoliatum s.str. (polyploid) were shown to be distinct species, phylogenetically widely separate, but with some overlap in several morphological characters. Detailed descriptions, notes on taxonomy, geographical distribution, and line drawings for the new species and each species previously included in Microthlaspi are provided. In addition, the current taxonomic state of the tribe Coluteocarpeae is briefly discussed and it is concluded that while several annual taxa are clearly distinct from Noccaea, many perennial taxa, after thorough phylogenetic and morphological investigations, may have to be merged with this genus. © International Association for Plant Taxonomy (IAPT) 2016

    Jasmonate promotes auxin-induced adventitious rooting in dark-grown Arabidopsis thaliana seedlings and stem thin cell layers by a cross-talk with ethylene signalling and a modulation of xylogenesis

    Get PDF
    Background: Adventitious roots (ARs) are often necessary for plant survival, and essential for successful micropropagation. In Arabidopsis thaliana dark-grown seedlings AR-formation occurs from the hypocotyl and is enhanced by application of indole-3-butyric acid (IBA) combined with kinetin (Kin). The same IBA + Kin-treatment induces AR-formation in thin cell layers (TCLs). Auxin is the main inducer of AR-formation and xylogenesis in numerous species and experimental systems. Xylogenesis is competitive to AR-formation in Arabidopsis hypocotyls and TCLs. Jasmonates (JAs) negatively affect AR-formation in de-etiolated Arabidopsis seedlings, but positively affect both AR-formation and xylogenesis in tobacco dark-grown IBA + Kin TCLs. In Arabidopsis the interplay between JAs and auxin in AR-formation vs xylogenesis needs investigation. In de-etiolated Arabidopsis seedlings, the Auxin Response Factors ARF6 and ARF8 positively regulate AR-formation and ARF17 negatively affects the process, but their role in xylogenesis is unknown. The cross-talk between auxin and ethylene (ET) is also important for AR-formation and xylogenesis, occurring through EIN3/EIL1 signalling pathway. EIN3/EIL1 is the direct link for JA and ET-signalling. The research investigated JA role on AR-formation and xylogenesis in Arabidopsis dark-grown seedlings and TCLs, and the relationship with ET and auxin. The JA-donor methyl-jasmonate (MeJA), and/or the ET precursor 1-aminocyclopropane-1-carboxylic acid were applied, and the response of mutants in JA-synthesis and -signalling, and ET-signalling investigated. Endogenous levels of auxin, JA and JA-related compounds, and ARF6, ARF8 and ARF17 expression were monitored. Results: MeJA, at 0.01 μM, enhances AR-formation, when combined with IBA + Kin, and the response of the early-JA-biosynthesis mutant dde2–2 and the JA-signalling mutant coi1–16 confirmed this result. JA levels early change during TCL-culture, and JA/JA-Ile is immunolocalized in AR-tips and xylogenic cells. The high AR-response of the late JA-biosynthesis mutant opr3 suggests a positive action also of 12-oxophytodienoic acid on AR-formation. The crosstalk between JA and ET-signalling by EIN3/EIL1 is critical for AR-formation, and involves a competitive modulation of xylogenesis. Xylogenesis is enhanced by a MeJA concentration repressing AR-formation, and is positively related to ARF17 expression. Conclusions: The JA concentration-dependent role on AR-formation and xylogenesis, and the interaction with ET opens the way to applications in the micropropagation of recalcitrant species

    RNA-Seq Analysis of a Soybean Near-Isogenic Line Carrying Bacterial Leaf Pustule-Resistant and -Susceptible Alleles

    Get PDF
    Bacterial leaf pustule (BLP) disease is caused by Xanthomonas axonopodis pv. glycines (Xag). To investigate the plant basal defence mechanisms induced in response to Xag, differential gene expression in near-isogenic lines (NILs) of BLP-susceptible and BLP-resistant soybean was analysed by RNA-Seq. Of a total of 46 367 genes that were mapped to soybean genome reference sequences, 1978 and 783 genes were found to be up- and down-regulated, respectively, in the BLP-resistant NIL relative to the BLP-susceptible NIL at 0, 6, and 12h after inoculation (hai). Clustering analysis revealed that these genes could be grouped into 10 clusters with different expression patterns. Functional annotation based on gene ontology (GO) categories was carried out. Among the putative soybean defence response genes identified (GO:0006952), 134 exhibited significant differences in expression between the BLP-resistant and -susceptible NILs. In particular, pathogen-associated molecular pattern (PAMP) and damage-associated molecular pattern (DAMP) receptors and the genes induced by these receptors were highly expressed at 0 hai in the BLP-resistant NIL. Additionally, pathogenesis-related (PR)-1 and -14 were highly expressed at 0 hai, and PR-3, -6, and -12 were highly expressed at 12 hai. There were also significant differences in the expression of the core JA-signalling components MYC2 and JASMONATE ZIM-motif. These results indicate that powerful basal defence mechanisms involved in the recognition of PAMPs or DAMPs and a high level of accumulation of defence-related gene products may contribute to BLP resistance in soybean

    Outline of fungi and fungus-like taxa

    Get PDF
    This article provides an outline of the classification of the kingdom Fungi (including fossil fungi. i.e. dispersed spores, mycelia, sporophores, mycorrhizas). We treat 19 phyla of fungi. These are Aphelidiomycota, Ascomycota, Basidiobolomycota, Basidiomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Entorrhizomycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota. The placement of all fungal genera is provided at the class-, order- and family-level. The described number of species per genus is also given. Notes are provided of taxa for which recent changes or disagreements have been presented. Fungus-like taxa that were traditionally treated as fungi are also incorporated in this outline (i.e. Eumycetozoa, Dictyosteliomycetes, Ceratiomyxomycetes and Myxomycetes). Four new taxa are introduced: Amblyosporida ord. nov. Neopereziida ord. nov. and Ovavesiculida ord. nov. in Rozellomycota, and Protosporangiaceae fam. nov. in Dictyosteliomycetes. Two different classifications (in outline section and in discussion) are provided for Glomeromycota and Leotiomycetes based on recent studies. The phylogenetic reconstruction of a four-gene dataset (18S and 28S rRNA, RPB1, RPB2) of 433 taxa is presented, including all currently described orders of fungi.Fil: Wijayawardene, N. N.. Qujing Normal University; ChinaFil: Hyde, K. D.. Mae Fah Luang University; TailandiaFil: Al-Ani, L. K. T.. University of Baghdad; IraqFil: Tedersoo, L.. University of Tartu; EstoniaFil: Haelewaters, D.. University of South Bohemia; República Checa. Purdue University; Estados Unidos. Universidad Autónoma de Chiriquí; PanamáFil: Becerra, Alejandra Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Schnittler, M.. Ernst Moritz Arndt University Greifswald; AlemaniaFil: Shchepin, O. N.. The Komarov Botanical Institute of the Russian Academy of Sciences; RusiaFil: Novozhilov, Y. K.. The Komarov Botanical Institute of the Russian Academy of Sciences; RusiaFil: Silva-Filho, A.G. S.. Universidade Federal do Rio Grande do Norte; BrasilFil: Gentekaki, E.. Mae Fah Luang University; TailandiaFil: Liu, P.. Jilin Agricultural University; ChinaFil: Cavender, J. C.. Ohio University; Estados UnidosFil: Kang, Y.. Guizhou Medical University; ChinaFil: Mohammad, S.. Iranian Research Organization for Science and Technology; IránFil: Zhang, L. F.. Qujing Normal University; ChinaFil: Xu, R. F.. Qujing Normal University; ChinaFil: Li, Y. M.. Qujing Normal University; ChinaFil: Dayarathne, M. C.. Guizhou University; ChinaFil: Ekanayaka, A. H.. Mae Fah Luang University; TailandiaFil: Wen, T. C.. Guizhou University; ChinaFil: Deng, C. Y.. Guizhou Academy of Science; ChinaFil: Pereira, O. L.. Universidade Federal de Viçosa; BrasilFil: Navathe, S.. Agharkar Research Institute; IndiaFil: Hawksworth, D. L.. The Natural History Museum; Reino UnidoFil: Fan, X. L.. Beijing Forestry University; ChinaFil: Dissanayake, L. S.. Guizhou University; ChinaFil: Kuhnert, E.. Leibniz University Hannover; AlemaniaFil: Grossart, H. P.. Leibnitz Institute of Freshwater Ecology and Inland Fisheries; AlemaniaFil: Thines, M.. Senckenberg Biodiversity and Climate Research Centre; Alemani
    corecore