1,497 research outputs found

    A question of scale

    Full text link
    If you search for 'collective behaviour' with your web browser most of the texts popping up will be about group activities of humans, including riots, fashion and mass panic. Nevertheless, collective behaviour is also considered to be an important aspect of observed phenomena in atoms and molecules, for example, during spontaneous magnetization. In your web search, you might also find articles on collectively migrating bacteria, insects or birds; or phenomena where groups of organisms or non- living objects synchronize their signals or motion (think of fireflies flashing in unison or people clapping in phase during rhythmic applause).Comment: Concepts essay, published in Nature http://www.nature.com/nature/journal/v411/n6836/full/411421a0.htm

    An Associative Semantic Network for Machine-Aided Indexing, Classification and Searching

    Get PDF
    Capturing and exploiting textual database associations has played a pivotal role in the evolution of automated information systems. A variety of statistical, linguistic and artificial intelligence approaches have been described in the literature.Many of these R and D concepts and techniques are now being incorporated into commercially available search systems and services. This paper discusses prior work and reports on research in progress aimed at creating and utilizing a global semantic associative database, AURA (Associative User Retrieval Aid) to facilitate machine-assisted indexing, classification and searching in the large-scale information processing environment of NLM's core bibliographic databases, MEDLINE and CATLINE. AURA is a semantic network of over two million natural language phrases derived from more than a million MEDLINE titles. These natural language phrases are associatively linked to NLM's MeSH (Medical Subject Headings) and UMLS Metathesaurus (Unified Medical Language System) controlled vocabulary and classification resources

    Application of Luenberger's observer in RFPT-based adaptive control - 2014; A case study

    Get PDF
    The traditional way of thinking in controller design prefers the use of the “state space representation” introduced by R. Kalman in the early sixties of the past century. This system description is in close relationship with linear or at least partly linear system in which the linear part can be used in forming a quadratic Lyapunov function in the stability proof. In the standard model of such systems it is assumed that the state of the system is not directly observable, only certain linear functions of the state variable are directly measurable. Since such approaches introduce certain feedback gains for the state variable, observers are needed that calculate the estimation of the state variable on the basis of directly measurable quantities. The Luenberger observers solve this task via introducing a differential equation for the estimated state. In order to avoid the mathematical difficulties of Lya- punov’s “direct method” the “ Robust Fixed Point Transforma- tions (RFPT) ” were introduced in a novel adaptive technique that instead of the state space representation directly utilized the available approximate model of the system to estimate its “response function”. In this approach it was assumed that the system’s response is directly observable and an iterative sequence was generated by the use of “ Banach’s Fixed Point Theorem ” that converged to an appropriate deformation of the rough initial model to obtain precise trajectory tracking. In the present paper it is shown that the Luenberger observers and the RFPT-based mathod can be combined in a more con- ventional approach of the adaptive controllers that are designed on the basis of finding appropriate feedback gains. Illustrative simulation examples are presented to substantiate this statement

    Quantum dark solitons in Bose gas confined in a hard wall box

    Full text link
    Schr\"odinger equation for Bose gas with repulsive contact interactions in one-dimensional space may be solved analytically with the help of the Bethe ansatz if we impose periodic boundary conditions. It was shown that in such a system there exist many-body eigenstates directly corresponding to dark soliton solutions of the mean-field equation. The system is still integrable if one switches from the periodic boundary conditions to an infinite square well potential. The corresponding eigenstates were constructed by M. Gaudin. We analyze weak interaction limit of Gaudin's solutions and identify parametrization of eigenstates strictly connected with single and multiple dark solitons. Numerical simulations of detection of particle's positions reveal dark solitons in the weak interaction regime and their quantum nature in the presence of strong interactions.Comment: 7 pages, 4 figures, version accepted for publication in Phys. Rev.

    Extending 3D Near-Cloud Corrections from Shorter to Longer Wavelengths

    Get PDF
    Satellite observations have shown a positive correlation between cloud amount and aerosol optical thickness (AOT) that can be explained by the humidification of aerosols near clouds, and/or by cloud contamination by sub-pixel size clouds and the cloud adjacency effect. The last effect may substantially increase reflected radiation in cloud-free columns, leading to overestimates in the retrieved AOT. For clear-sky areas near boundary layer clouds the main contribution to the enhancement of clear sky reflectance at shorter wavelengths comes from the radiation scattered into clear areas by clouds and then scattered to the sensor by air molecules. Because of the wavelength dependence of air molecule scattering, this process leads to a larger reflectance increase at shorter wavelengths, and can be corrected using a simple two-layer model. However, correcting only for molecular scattering skews spectral properties of the retrieved AOT. Kassianov and Ovtchinnikov proposed a technique that uses spectral reflectance ratios to retrieve AOT in the vicinity of clouds; they assumed that the cloud adjacency effect influences the spectral ratio between reflectances at two wavelengths less than it influences the reflectances themselves. This paper combines the two approaches: It assumes that the 3D correction for the shortest wavelength is known with some uncertainties, and then it estimates the 3D correction for longer wavelengths using a modified ratio method. The new approach is tested with 3D radiances simulated for 26 cumulus fields from Large-Eddy Simulations, supplemented with 40 aerosol profiles. The results showed that (i) for a variety of cumulus cloud scenes and aerosol profiles over ocean the 3D correction due to cloud adjacency effect can be extended from shorter to longer wavelengths and (ii) the 3D corrections for longer wavelengths are not very sensitive to unbiased random uncertainties in the 3D corrections at shorter wavelengths

    Validation of the Two-Layer Model for Correcting Clear Sky Reflectance Near Clouds

    Get PDF
    A two-layer model was developed in our earlier studies to estimate the clear sky reflectance enhancement near clouds. This simple model accounts for the radiative interaction between boundary layer clouds and molecular layer above, the major contribution to the reflectance enhancement near clouds for short wavelengths. We use LES/SHDOM simulated 3D radiation fields to valid the two-layer model for reflectance enhancement at 0.47 micrometer. We find: (a) The simple model captures the viewing angle dependence of the reflectance enhancement near cloud, suggesting the physics of this model is correct; and (b) The magnitude of the 2-layer modeled enhancement agree reasonably well with the "truth" with some expected underestimation. We further extend our model to include cloud-surface interaction using the Poisson model for broken clouds. We found that including cloud-surface interaction improves the correction, though it can introduced some over corrections for large cloud albedo, large cloud optical depth, large cloud fraction, large cloud aspect ratio. This over correction can be reduced by excluding scenes (10 km x 10km) with large cloud fraction for which the Poisson model is not designed for. Further research is underway to account for the contribution of cloud-aerosol radiative interaction to the enhancement

    Microstructured blood vessel surrogates reveal structural tropism of motile malaria parasites

    Get PDF
    Plasmodium sporozoites, the highly motile forms of the malaria parasite, are transmitted naturally by mosquitoes and traverse the skin to find, associate with, and enter blood capillaries. Research aimed at understanding how sporozoites select blood vessels is hampered by the lack of a suitable experimental system. Arrays of uniform cylindrical pillars can be used to study small cells moving in controlled environments. Here, an array system displaying a variety of pillars with different diameters and shapes is developed in order to investigate how Plasmodium sporozoites associate to the pillars as blood vessel surrogates. Investigating the association of sporozoites to pillars in arrays displaying pillars of different diameters reveals that the crescent-shaped parasites prefer to associate with and migrate around pillars with a similar curvature. This suggests that after transmission by a mosquito, malaria parasites may use a structural tropism to recognize blood capillaries in the dermis in order to gain access to the blood stream

    The novel MAPT mutation K298E:mechanisms of mutant tau toxicity, brain pathology and tau expression in induced fibroblast-derived neurons

    Get PDF
    Frontotemporal lobar degeneration (FTLD) consists of a group of neurodegenerative diseases characterized by behavioural and executive impairment, language disorders and motor dysfunction. About 20-30 % of cases are inherited in a dominant manner. Mutations in the microtubule-associated protein tau gene (MAPT) cause frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17T). Here we report a novel MAPT mutation (K298E) in exon 10 in a patient with FTDP-17T. Neuropathological studies of post-mortem brain showed widespread neuronal loss and gliosis and abundant deposition of hyperphosphorylated tau in neurons and glia. Molecular studies demonstrated that the K298E mutation affects both protein function and alternative mRNA splicing. Fibroblasts from a skin biopsy of the proband taken at post-mortem were directly induced into neurons (iNs) and expressed both 3-repeat and 4-repeat tau isoforms. As well as contributing new knowledge on MAPT mutations in FTDP-17T, this is the first example of the successful generation of iNs from skin cells retrieved post-mortem

    Evaluation of ADAM-12 as a diagnostic biomarker of ectopic pregnancy in women with a pregnancy of unknown location

    Get PDF
    Ectopic pregnancy (EP) remains the most life-threatening acute condition in modern gynaecology. It remains difficult to diagnose early and accurately. Women often present at emergency departments in early pregnancy with a 'pregnancy of unknown location' (PUL) and diagnosis/exclusion of EP is challenging due to a lack of reliable biomarkers. Recent studies suggest that serum levels of a disintegrin and metalloprotease protein-12 (ADAM-12) can be used differentiate EP from viable intrauterine pregnancy (VIUP). Here we describe a prospective study evaluating the performance of ADAM-12 in differentiating EP from the full spectrum of alternative PUL outcomes in an independent patient cohort.Sera were collected from 120 patients at their first clinical presentation with a PUL and assayed for ADAM-12 by ELISA. Patients were categorized according to final pregnancy outcomes. Serum ADAM-12 concentrations were increased in women with histologically-confirmed EP (median 442 pg/mL; 25%-75% percentile 232-783 pg/mL) compared to women with VIUP (256 pg/mL; 168-442 pg/mL) or miscarriage (192 pg/mL; 133-476 pg/mL). Serum ADAM-12 did not differentiate histologically-confirmed EP from spontaneously resolving PUL (srPUL) (416 pg/mL; 154-608 pg/mL). The diagnostic potential of ADAM-12 was only significant when 'ambiguous' PUL outcomes were excluded from the analysis (AROC = 0.6633; P = 0.03901).When measured in isolation, ADAM-12 levels had limited value as a diagnostic biomarker for EP in our patient cohort. The development of a reliable serum biomarker-based test for EP remains an ongoing challenge
    corecore