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Abstract—The traditional way of thinking in controller design
prefers the use of the “state space representation’ introduced by
R. Kalman in the early sixties of the past century. This system
description is in close relationship with linear or at least partly
linear system in which the linear part can be used in forming
a quadratic Lyapunov function in the stability proof. In the
standard model of such systems it is assumed that the state of the
system is not directly observable, only certain linear functions of
the state variable are directly measurable. Since such approaches
introduce certain feedback gains for the state variable, observers
are needed that calculate the estimation of the state variable
on the basis of directly measurable quantities. The Luenberger
observers solve this task via introducing a differential equation
for the estimated state.

In order to avoid the mathematical difficulties of Lya-
punov’s “direct method” the “Robust Fixed Point Transforma-
tions (RFPT)” were introduced in a novel adaptive technique
that instead of the state space representation directly utilized
the available approximate model of the system to estimate its
“response function”. In this approach it was assumed that the
system’s response is directly observable and an iterative sequence
was generated by the use of “Banach’s Fixed Point Theorem” that
converged to an appropriate deformation of the rough initial
model to obtain precise trajectory tracking.

In the present paper it is shown that the Luenberger observers
and the RFPT-based mathod can be combined in a more con-
ventional approach of the adaptive controllers that are designed
on the basis of finding appropriate feedback gains. Illustrative
simulation examples are presented to substantiate this statement.

I. INTRODUCTION

In his survey book V. Jurdjevic [1] so characterized the
“classic approaches of linear control” that were prevailing
before the early publications of Rudolf Kalman in the sixties
of the past century (e.g. [2]):

“Control theory, originally developed to satisfy
the design needs of servomechanisms, under the
name of “automatic control theory”, became rec-
ognized as a mathematical subject in 1960, with
the publication of the early papers of R. Kalman.
Kalman challenged the accepted approach to con-
trol theory of that period, limited to the use of
Laplace transforms and frequency domain, by show-
ing that the basic control problems could be studied
effectively through the notion of the state of the
system that evolves in time according to ordinary
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differential equations in which controls appear as
parameters. Aside from drawing attention to the
mathematical content of control problems, Kalman’s
work served as a catalyst for further growth of the
subject. Liberated from the confines of the frequency
domain and further inspired by the development of
computers, automatic control theory became the sub-
Jject matter of a new science called systems theory.”
Proceeding along these “fixed rails” even Isidori’s book on
nonlinear control systems [3] starts with the investigation of
the “Linear Time-Invariant (LTI)” systems of the form

i = Az + Bu,

y=Cx 6]

in which A is a constant real matrix of size n X n, B is
also a constant real matrix of size n x m (0 < m < n),
u of size m x 1 is the array of the control signals, and
C is a constant real matrix of size k x n (k < n), and
y is the directly measurable quantity (it is assumed that
the components of z are not immediately observable. The
possession of the “system model” means that we have exact
information on matrices A, B, and C. If these matrices have
explicit time-dependence through the parameters of the system
we have “Linear Parameter Varying (LPV)” systems. If these
matrices also depend on time through certain components of
the state variable x the system is categorized as “Quasi-Linear
Parameter-Varying (qLPV)”. This latter concept was found to
be very fruitable since with the combination of the “Tensor
Product (TP)” model and the “Higher Order Singular Value
Decomposition (HOSVD)” it allowed the utilization of the
results obtained for linear controllers via solving linear matrix
inequalities (e.g. [4], [S]).

Returning to the classic LTI systems, the system is regarded
as controllable is from each posible initial state x; each possi-
ble final state x; can be reached. Furthermore, for realizing a
control the state x must be observable in order make it possible
to ealize the necessary feedback. In the case of LTI systems the
1st equation of (1) can be regarded as an inhomogeneous set of
linear differential equations of constant coefficients the general
solution of which can be obtained as the sum of the general
solution of the homogeneous set plus a particular solution of
the inhomogeneous equations. This latter can be obtained as
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£(t) = / exp (EA) Bu(t - €)d. @

to

Taking into account that exp (EA) B =>"2, %B, accord-

ing to the Cayley-Hamilton Theorem the linearly independent
matrices can be only {B,AB,A?B,..., A" !B}, the LTI
system is controllable if these matrices have full rank [6].
Otherwise there were sub-spaces in x the propagation of
which could not be influenced by the components of u. In
similar manner, if C' is not quadratic and directly invertible
the sequence of the observed quantity and its derivatives can
be considered as {y,7,...,y™ D} that can be obtained by
substituting of the 1st equation of (1) into its 2nd equation
leading to the coefficients of z as {C,CA,CA% ..., CA"~1}
in the linear equation

y C

U CcA

i = CA? x + knownterms. (3)
y(n.—l) CA(.n—l)

Again, due to the Cayley-Hamilton theorem no higher deriva-
tives must be investigated. If the matrix in (3) has a non-zero
null space then certain subspaces in {x} cannot be observed.
Regarding stability, if the real part of each eigenvalue of A is
negative, the system is stable, otherwise it is unstable.

For the cases in which in (1) C has full rank (or a similar
matrix equation can be obtained), since x is not known, the
appropriate feedback can be realized through its estimate &
and the following system of differential equations:

& = Ax + Bu,
=A%+ Bu+ L(y — C%)

that corresponds to the application of a Luenberger observer
with the gains given in matrix L. The aim of this observer
is the realization of the Z(¢) — x(t) convergence while the
feedback in the control signal u is realized by the use of &
instead of the unknown z. For simultaneous design of the
feedback coefficients in « and the matrix L, depending on
the particular properties of the system under control, various
possibilities exist. In the next section a “school example” will
be considered.

“)

II. THE SYSTEM MODEL AND THE CONVENTIONAL
DESIGN

Our model is a nonlinear oscillator having the exact equa-
tions of motion as

G=—kq—bj—ci®+u (5)

in which k& > 0 is a spring stiffness constant, b > 0 describes
viscous friction, and ¢ > 0 corresponds to the coefficient of
the drag force while moving in e.g. air or water. This latter
term makes the system’s dynamics nonlinear. For the controller
design the linear approximation of (5) is applied as

G=—kq—bj+u (6)

for which a linear design is possible as follows. The formal
state-space model can be constructed by the introduction of
the state variable x = [x1,22]7 = [g,¢]? leading to the

reformulation of the approximate model as

B I 1 R T

that corresponds to (1) with A = [ 0 1

_k _b]andB:

1 and a one dimensional control signal v € R. It is

worthy of note that in the “Adaptive Inverse Dynamics” and
the “Adaptive Slotine-Li Robot Controller” [7] a similar step
is done with the aim of obtaining a Lyapunov equation that
contains the appropriate matrix A.

If the task is to trace a nominal trajectory z™(t) :=
[V (t),¢N (#)]T, in the possession of the exact model and
the state variable x the following feedback rule could be
introduced: Bu™ (t) := 2™ (¢) — Az (¢):

o ] [a&F 0 1 oV 3
LS AT e
leading to u” = kad + ba)’ without any contradiction since
# = 2V This term can be completed by an error-feedback
as Bu(t) = Bu® (t)+B[K1, K;] (¢ (t) — x(t)) in which K;
and K are feedback gains in K := [K7, K3]. In this manner
the following equations of motion can be obtained:

i = Az + BuM + BK (2™ (t) — z(t)),

iV = AzN 4+ BuN = 9)
% (JCN—:E) = (A - BK) (:CN—:E)
ith A—BK = 0 1 In this simpl
w1 | Sk—K, —-b-K, |’ n this simple case
the z — =V convergence can be guaranteed by the simple

method of Pole Placement i.e. by prescribing the spectrum of
A — BK in the following manner:

det(A—BK — M) =(A—X\)? =

N A+ ) +h+ Ky =22 — a4z 10

yielding K1 = A\? —k and Ko = —b—2)\; with R > \; < 0.
If we assume that only x; can directly be observed the
y = [1,0][x1,22]T = x1 rule is valid with C' = [1,0] in (1),

i.e. we need one derivation as
Y X1 T
. = = . = 1]
[ Y } [ } [ Z1 } [ T2 } (n

therefore our complete set of equations will be

[lv O] [331, x2]T
[15 O] [x.h sz]T

g'c:Ax—i—BuN—i—BK(xN—:%),

&= Ai+ BuN + BK (2 — &) + L(z — &) (12)

366



CINTI 2013 « 14th IEEE International Symposium on Computational Intelligence and Informatics * 19-21 November, 2013 « Budapest, Hungary

since the feedback is realized instead of x by Z. For the state
estimation error e := x — & this yields

%e:Ae—Le: (A= L)e.
For the convergence & — « the spectrum of A — L must
be properly set. Here L denotes the feedback gain of the
Luenberger Observer [8].

If L is only a scalar then this spectrum is determined by
the characteristic polynomial’s roots that is by the solutions of
the equation

13)

—L—pu 1

det _k b—L—p

-0 (14)
yielding p2 + (b + 2L)u + L(b + 1) = 0, therefore pq o =
—b—2L4+/(b+2L)2—4L(b+1L)

5 ,thatis y; = —L and uy = —b—L
are negative values if L > 0, therefore the £ — x convergence
is granted for L > 0. In the sequel the operation of this
control designed for the linear approximation of the model
is investigated for the nonlinear system. It is expected that for
small coefficient ¢ it can work well but after transcending
a limit for c the controller may become unstable. Before
providing simulation results the adaptive completion of this
controller by the use of the RFPT transformations.

III. THE RFPT-BASED DESIGN

The RFPT-based method is an iterative technique designed
for digital controllers of fixed cycle time. The iteration happens
through the consecutive control cycles that for “Single Input—
Single Output (SISO)” systems works as follows: The design
is initiated by determining a kinematically prescribed desired
system response r2¢* that —in our case— will be f := ¢. The
control signal in cycle n i.e. u,, will be computed from that of
cycle n—1 as uy,_1, and from the realized response observed
in the previous cycle f (u,_1) as

Up = G (un—h f(un—l)ary?es) =
(’U,n,1 + Kc) X
(1 + B.o (Ac [f(un_l) - rf?es])) - K.

in which o(x) € (—1,41) is a monotone increasing smooth
sigmoid function with the further properties as o(0) = 0,
d‘;(;) |z=0 = 1, B. = £1, while K. and A, are adaptive con-
trol parameters [9]. The Response Function f normally also
depends on the actual state of the system, on the parameters
of the approximate and the actual system models as well as
on the external disturbances.

Regarding the convergence of the iteration Banach’s Fixed
Point Theorem [10] can be applied as follows: if the derivative
of G according to u,, in its absolute value is smaller than 1
this function becomes contractive in the vicinity of the fixed
point and it converges to this fixed point. The convergence
can be achieved by properly setting the three adaptive control
parameters K., B., and A.. For improving the convergence
properties of this novel methods complementary tuning tech-
niques were recently suggested as e.g. [11], [12], [13].

15)

IV. THE COMBINATION OF THE TRADITIONAL AND THE
RFPT-BASED APPROACHES

In the present context no complementary parameter tuning
was necessary. In the “role” of the desired response § that
is the response of the approximate linear model was placed.
The control signals were so deformed that the response of the
nonlinear system well approximated that of the linear system.
The nominal trajectory to be tracked was a third order spline
function of time. The parameters were set as follows: k =
100, b = 10 for the model, \y = —12, L = 24, K. = 109,
B.= -1, A, =105,

Figure 1 demonstrates the operation of the Luenberger
observer in the non-adaptive control for the exactly linear
case in which ¢ = 0. It well corresponds to the theoretical
expectations. Tis non-adaptive controller worked for ¢ = 3
(Fig. 2) but for higher values of c it was found to be divergent
(this corresponds to the limits of the linear design).

The State Estimation Error

0.006 1-
0.004 +-------

0.002 -

[10°-1]

-0.002

—0.004

Fig. 1. The operation of the non-adaptive Luenberger observer for the exactly
linear system model: trajectory tracking (top: x1: black, x2: blue, Z1: red, Za:
ocher, :cf] : green, xé\’ : purple lines) and the state estimation error (bottom)
versus time in [s] units

The adaptive counterpart of Fig. 2 is Fig. 3. The precision
of the state estimation as well as that of the trajectory tracking
were evidently improved.

The adaptive version was able to realize the control till
¢ = 6 (Fig. 4). The differences between the adaptive and non-
adaptive control signals for ¢ = 3 and ¢ = 6 are given in
Fig. 5. In Fig. 6 the control signals are described. It is worthy
of note that the relative differences are small. However, if the
fact is taken into account that the integral of the control signal
is accumulated in time the significance of this little difference
can well be understood.
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Fig. 2.  The operation of the non-adaptive Luenberger observer for the
modeling inaccuracy belonging to ¢ = 3: trajectory tracking (top: x1: black,
x9: blue, &1: red, To: ocher, :ch’ : green, zé\' : purple lines), the state estimation
error (middle), and tracking error (bottom) [black line for x1, and blue line
for x2] versus time in [s] units

V. CONCLUSIONS

In this paper, via a simple case study, it was shown that the
classical Luenberger observer and the RFPT-based adaptive
controller needing immediately observed system response can
be combined in order to serve the information-need of the
RFPT-based controller. The here considered example was a
nonlinear oscillator. Its linear approximation was used design-
ing the feedback gains via pole placement and setting the gain
of the Luenberger observer.

However, it must be stressed that the RFPT-based method
can be applied independently of the “standard form” of (1) by
directly using the approximate dynamic model of the system to
be controlled. In this case the desired response can be directly
designed without planning simple feedback gains as it is done
in the case of real LTI systems.

Regarding further research it seems to be expedient to

The State Estimation Error

Time [s]

The Tracking Error

[107-1]

5
Time [s]

Fig. 3. The operation of the adaptive Luenberger observer for the modeling
inaccuracy belonging to ¢ = 3: the state estimation error (top), and tracking
error (bottom) [black line for z1, and blue line for z2] versus time in [s]
units

The State Estimation Error

Time [s]

The Tracking Error

[107-1]

Time [s]

Fig. 4. The operation of the adaptive Luenberger observer for the modeling
inaccuracy belonging to ¢ = 6: the state estimation error (top), and tracking
error (bottom) [black line for x1, and blue line for x2] versus time in [s]
units
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The Original — Adaptively Deformed Control Signal
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Fig. 5. The difference between the non-adaptive (black line) and adaptive
(blue line) control signals for ¢ = 3 (top), and ¢ = 6 (bottom) versus time in
[s] units

The Original and the Adaptively Deformed Control Signal
90 -

Time [s]

The Original and the Adaptively Deformed Control Signal
12

Time [s]

Fig. 6. The non-adaptive (black line) and adaptive (blue line) control signals
for ¢ = 3 (top), and ¢ = 6 (bottom) versus time in [s] units

make similar investigations for Kalman Filters and/or variable
structure sliding mode filters for various nonlinear paradigms.
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