794 research outputs found

    Succession of the sea-surface microlayer in the coastal Baltic Sea under natural and experimentally induced low-wind conditions

    Get PDF
    The sea-surface microlayer (SML) is located within the boundary between the atmosphere and hydrosphere. The high spatial and temporal variability of the SML's properties, however, have hindered a clear understanding of interactions between biotic and abiotic parameters at or across the air-water interface. Among the factors changing the physical and chemical environment of the SML, wind speed is an important one. In order to examine the temporal effects of minimized wind influence, SML samples were obtained from the coastal zone of the southern Baltic Sea and from mesocosm experiments in a marina to study naturally and artificially calmed sea surfaces. Organic matter concentrations as well as abundance, (3)H-thymidine incorporation, and the community composition of bacteria in the SML (bacterioneuston) compared to the underlying bulk water (ULW) were analyzed. In all SML samples, dissolved organic carbon and nitrogen were only slightly enriched and showed low temporal variability, whereas particulate organic carbon and nitrogen were generally greatly enriched and highly variable. This was especially pronounced in a dense surface film (slick) that developed during calm weather conditions as well as in the artificially calmed mesocosms. Overall, bacterioneuston abundance and productivity correlated with changing concentrations of particulate organic matter. Moreover, changes in the community composition in the field study were stronger in the particle-attached than in the non-attached bacterioneuston. This implies that decreasing wind enhances the importance of particle-attached assemblages and finally induces a succession of the bacterial community in the SML. Eventually, under very calm meteorological conditions, there is an uncoupling of the bacterioneuston from the ULW

    Less Is More: Long-Term in Vitro Exposure to Low Levels of Silver Nanoparticles Provides New Insights for Nanomaterial Evaluation

    Get PDF
    In view of the vast number of new nanomaterials (NMs) that require testing and the constraints associated with animal models, the majority of studies to elucidate nanotoxicological effects have occurred in vitro, with limited correlation and applicability to in vivo systems and realistic, occupational exposure scenarios. In this study, we developed and implemented a chronic in vitromodel coupled with lower, regulatory dosages in order to provide a more realistic assessment of NM-dependent consequences and illuminate the implications of long-term NM exposure. When keratinocytes were exposed to 50 nm silver nanoparticles (Ag-NPs), we determined that chronically dosed cells operated under augmented stress and modified functionality in comparison to their acute counterparts. Specifically, Ag-NP exposure through a chronic mechanism increased p38 activation, actin disorganization, heightened ki67 expression, and extensive gene modification. Additionally, chronic Ag-NP exposure altered the way in which cells perceived and responded to epidermal growth factor stimulation, indicating a transformation of cell functionality. Most importantly, this study demonstrated that chronic exposure in the pg/mL range to Ag-NPs did not induce a cytotoxic response, but instead activated sustained stress and signaling responses, suggesting that cells are able to cope with prolonged, low levels of Ag-NP exposure. In summary, we demonstrated that through implementation of a chronic dosimetry paradigm, which more closely resembles realistic NM exposure scenarios, it is possible to illuminate long-term cellular consequences, which greatly differ from previously obtained acute assessments

    Dynamic strength of a modified W-beam BCT trailing-end termination system

    Get PDF
    W-beam systems utilize end-terminal anchorages to develop tension upstream and downstream of an impact event. However, the capacities of the anchorage components under impact loading are not well known. One such W-beam end anchorage system, the Midwest guardrail system (MGS) trailing-end anchorage, was evaluated using three dynamic component tests _ a soil foundation tube pull test, a breakaway cable terminal (BCT) post splitting test, and an MGS end anchorage system pull test. The peak load recorded during a soil foundation tube test was 193 kN at 56 mm deflection, as measured at the ground line. BCT posts split at loads of 17.8 and 32.9 kN. The end-anchorage tensile capacity was 156 kN, dissipating 64.7 kJ. Results from the component tests were also used to create and validate nonlinear finite element models of the components in order to be used for future design and analysis of end anchorages

    Cable Median Barrier Failure Analysis and Remediation Phase II

    Get PDF
    Cable median barrier crashes from a total of 12 states were analyzed. Crash data included scene diagrams, photographs, and field measurements, crash narratives, although the availability of data in each crash varied. Major contributors to penetration crash propensity were identified: diving underride, in which the front end of the vehicle dropped below the bottom cable; prying, in which the vehicle profile caused cable separation or lifting; override; bouncing override, in which the vehicle rebounded after contact with the back slope and bounced over the top of the barrier; system failure, in which one component failure or design failure prevented the cables from adequately engaging the vehicle; and large vehicle crashes, such as tractor trailers, buses, and single-unit trucks into TL-3 systems. Major contributors to rollover were identified: steep median slopes, in which the slope caused unstable bouncing or abrupt changes in slope profiles acted as trip points for the tires; broadside skid, in which the vehicle was skidding with a sideslip angle of nearly 90 degrees prior to contact with the barrier; contact with post, in which the post acted as a trip point; and other factors such as towing trailer units, median anomalies, or with large vehicles such as tractor-trailers, buses, or motor homes. Recommended improvements to cable median barrier systems included: minimum top cable height of 35 in. (890 mm); maximum top cable height of 15 in. (381 mm); minimum of 4 cables supported by posts; higher lateral cable-to-post attachment strength at bottom and lower strength at top; low strong-axis strength post sections; and to eliminate cable entrapment in a vertical slot in the post when initial cable contact occurs at a post location. A summary of factors and how they contributed to penetration, rollover, and severe crash probability is shown in Table 1

    Silver and Gold Nanoparticles Alter Cathepsin Activity In vitro

    Get PDF
    Nanomaterials are being incorporated into many biological applications for use as therapeutics, sensors, or labels. Silver nanomaterials are being utilized for biological implants and wound dressings as an antiviral material, whereas gold nanomaterials are being used as biological labels or sensors due to their surface properties and biocompatibility. Cytotoxicity data of these materials are becoming more prevalent; however, little research has been performed to understand how the introduction of these materials into cells affects cellular processes. Here, we demonstrate the impact that silver and gold nanoparticles have on cathepsin activity in vitro. Cathepsins are important cellular proteases that are imperative for proper immune system function. We have selected to examine gold and silver nanoparticles due to the increased use of these materials in biological applications. This manuscript depicts how both of these types of nanomaterials affect cathepsin activity, which could impact the host's immune system and its ability to respond to pathogens. Cathepsin B activity decreases in a dose-dependent manner with all nanoparticles tested. Alternatively, the impact of nanoparticles on cathepsin L activity depends greatly on the type and size of the material

    A GaAs metalorganic vapor phase epitaxy growth process o reduce Ge out-diffusion from the Ge substrate

    Full text link
    A barrier based on GaAs for controlling the Ge out diffusion has been developed by metalorganic vapor phase epitaxy. It is based on a thin GaAs layer (50 nm) grown at a low temperature (≈500 °C) on top of a predeposition layer, showing that GaAs prevents the Ge diffusing when it is grown at a low temperature. Additionally, two different predeposition monolayers have been compared, concluding that when the Ga is deposited first, the diffusions across the GaAsGe heterointerface decrease

    Field-aligned current associated with low-latitude plasma blobs as observed by the CHAMP satellite

    Get PDF
    Here we give two examples of low-latitude plasma blobs accompanied by linearly polarized perpendicular magnetic deflections which imply that associated field-aligned currents (FACs) have a 2-D sheet structure located at the blob walls. The estimated FAC density is of the order of 0.1 μA/m<sup>2</sup>. The direction of magnetic deflections points westward of the magnetic meridian and there is a linear correlation between perpendicular and parallel variations. All these properties are similar to those of equatorial plasma bubbles (EPBs). According to CHAMP observations from August 2000 to July 2004, blobs show except for these two good examples no clear signatures of 2-D FAC sheets at the walls. Generally, perpendicular magnetic deflections inside blobs are weaker than inside EPBs on average. Our results are consistent with existing theories: if a blob exists, (1) a significant part of EPB FAC will be closed through it, exhibiting similar perpendicular magnetic deflection inside EPBs and blobs, (2) the FAC closure through blobs leads to smaller perpendicular magnetic deflection at its poleward/downward side, and (3) superposition of different FAC elements might result in a complex magnetic signature around blobs

    Cost-Effective Safety Treatments for Low-Volume Roads

    Get PDF
    corecore