13 research outputs found

    Establishment of Hairy Root Cultures of Rhaponticum carthamoides (Willd.) Iljin for the Production of Biomass and Caffeic Acid Derivatives

    Get PDF
    The aim of the study was to obtain transformed roots of Rhaponticum carthamoides and evaluate their phytochemical profile. Hairy roots were induced from leaf explants by the transformation of Agrobacterium rhizogenes strains A4 and ATCC 15834. The best response (43%) was achieved by infection with A4 strain. The effects of different liquid media (WPM, B5, SH) with full and half-strength concentrations of macro- and micronutrients on biomass accumulation of the best grown hairy root line (RC3) at two different lighting conditions (light or dark) were investigated. The highest biomass (93 g L−1 of the fresh weight after 35 days) was obtained in WPM medium under periodic light. UPLC-PDA-ESI-MS3 and HPLC-PDA analyses of 80% aqueous methanol extracts from the obtained hairy roots revealed the presence of eleven caffeoylquinic acids and their derivatives and five flavonoid glycosides. The production of caffeoylquinic acids and their derivatives was elevated in hairy roots grown in the light. Only light-grown hairy roots demonstrated the capability for the biosynthesis of such flavonoid glycosides as quercetagetin, quercetin, luteolin, and patuletin hexosides. Chlorogenic acid, 3,5-di-O-caffeoylquinic acid and a tentatively identified tricaffeoylquinic acid derivative were detected as the major compounds present in the transformed roots

    Single-source three-phase switched-capacitor-based MLI

    No full text
    This article proposes a novel three-phase inverter based on the concept of switched capacitors (SCs), which uses a single DC source. A three-phase, seven-level line-to-line output voltage waveform is synthesised by the proposed topology, which includes eight switches, two capacitors, and one diode per phase leg. The proposed topology offers advantages in terms of inherent voltage gain, lower voltage stresses on power switches, and a reduced number of switching components. Additionally, the switched capacitors are self-balanced, thereby eliminating the need for a separate balancing circuit. The proposed structure and its operating principle, the self-balancing mechanism of the capacitors, and the control strategy are all thoroughly explained in the article. The proposed topology has also been compared with some recent SC topologies. Lastly, the proposed topology has been shown to be feasible through simulation and experimentation
    corecore