130 research outputs found

    Stochastic Geometric Models for Green Networking

    Get PDF
    International audience—In this work, we use a stochastic geometric approach in order to study the impact on energy consumption when base stations are switched off independently of each other. We present here both the uplink and downlink analysis based on the assumption that base stations are distributed according to an independent stationary Poisson point process. This type of modeling allows us to make use of the property that the spatial distribution of the base stations after thinning (switching-off) is still a Poisson process. This implies that the probability distribution of the SINR can be kept unchanged when switching-off base stations provided that we scale up the transmission power of the remaining base stations. We then solve the problem of optimally selecting the switch-off probabilities so as to minimize the energy consumptions while keeping unchanged the SINR probability distribution. We then study the trade-off in the uplink performance involved in switching-off base stations. These include energy consumption, the coverage and capacity, and the impact on amount of radiation absorbed by the transmitting user

    Reconfigurable Intelligent Surfaces vs. Relaying: Differences, Similarities, and Performance Comparison

    Get PDF
    Reconfigurable intelligent surfaces (RISs) have the potential of realizing the emerging concept of smart radio environments by leveraging the unique properties of meta-surfaces. In this article, we discuss the potential applications of RISs in wireless networks that operate at high-frequency bands, e.g., millimeter wave (30-100 GHz) and sub-millimeter wave (greater than 100 GHz) frequencies. When used in wireless networks, RISs may operate in a manner similar to relays. This paper elaborates on the key differences and similarities between RISs that are configured to operate as anomalous reflectors and relays. In particular, we illustrate numerical results that highlight the spectral efficiency gains of RISs when their size is sufficiently large as compared with the wavelength of the radio waves. In addition, we discuss key open issues that need to be addressed for unlocking the potential benefits of RISs.Comment: Submitted for journal publication (revised version

    Probabilistic Reconstruction in Compressed Sensing: Algorithms, Phase Diagrams, and Threshold Achieving Matrices

    Full text link
    Compressed sensing is a signal processing method that acquires data directly in a compressed form. This allows one to make less measurements than what was considered necessary to record a signal, enabling faster or more precise measurement protocols in a wide range of applications. Using an interdisciplinary approach, we have recently proposed in [arXiv:1109.4424] a strategy that allows compressed sensing to be performed at acquisition rates approaching to the theoretical optimal limits. In this paper, we give a more thorough presentation of our approach, and introduce many new results. We present the probabilistic approach to reconstruction and discuss its optimality and robustness. We detail the derivation of the message passing algorithm for reconstruction and expectation max- imization learning of signal-model parameters. We further develop the asymptotic analysis of the corresponding phase diagrams with and without measurement noise, for different distribution of signals, and discuss the best possible reconstruction performances regardless of the algorithm. We also present new efficient seeding matrices, test them on synthetic data and analyze their performance asymptotically.Comment: 42 pages, 37 figures, 3 appendixe

    Digestibility of resistant starch containing preparations using two in vitro models

    Get PDF
    BACKGROUND: Resistant starch (RS) is known for potential health benefits in the human colon. To investigate these positive effects it is important to be able to predict the amount, and the structure of starch reaching the large intestine. AIM OF THE STUDY: The aim of this study was to compare two different in vitro models simulating the digestibility of two RS containing preparations. METHODS: The substrates, high amylose maize (HAM) containing RS type 2, and retrograded long chain tapioca maltodextrins (RTmd) containing RS type 3 were in vitro digested using a batch and a dynamic model, respectively. Both preparations were characterized before and after digestion by using X-Ray and DSC, and by measuring their total starch, RS and protein contents. RESULTS: Using both digestion models, 60-61 g/100 g of RTmd turned out to be indigestible, which is very well in accordance with 59 g/100 g found in vivo after feeding RTmd to ileostomy patients. In contrast, dynamic and batch in vitro digestion experiments using HAM as a substrate led to 58 g/100 g and 66 g/100 g RS recovery. The degradability of HAM is more affected by differences in experimental parameters compared to RTmd. The main variations between the two in vitro digestion methods are the enzyme preparations used, incubation times and mechanical stress exerted on the substrate. However, for both preparations dynamically digested fractions led to lower amounts of analytically RS and a lower crystallinity. CONCLUSIONS: The two in vitro digestion methods used attacked the starch molecules differently, which influenced starch digestibility of HAM but not of RTmd

    Ripples in a pond: Do social work students need to learn about terrorism?

    Get PDF
    In the face of heightened awareness of terrorism, however it is defined, the challenges for social work are legion. Social work roles may include working with the military to ensure the well-being of service-men and women and their families when bereaved or injured, as well as being prepared to support the public within the emergency context of an overt act of terrorism. This paper reviews some of the literature concerning how social work responds to confl ict and terrorism before reporting a smallscale qualitative study examining the views of social work students, on a qualifying programme in the UK, of terrorism and the need for knowledge and understanding as part of their education

    Timing detectors with SiPM read-out for the MUSE experiment at PSI

    Get PDF
    The Muon Scattering Experiment at the Paul Scherrer Institute uses a mixed beam of electrons, muons, and pions, necessitating precise timing to identify the beam particles and reactions they cause. We describe the design and performance of three timing detectors using plastic scintillator read out with silicon photomultipliers that have been built for the experiment. The Beam Hodoscope, upstream of the scattering target, counts the beam flux and precisely times beam particles both to identify species and provide a starting time for time-of-flight measurements. The Beam Monitor, downstream of the scattering target, counts the unscattered beam flux, helps identify background in scattering events, and precisely times beam particles for time-of-flight measurements. The Beam Focus Monitor, mounted on the target ladder under the liquid hydrogen target inside the target vacuum chamber, is used in dedicated runs to sample the beam spot at three points near the target center, where the beam should be focused
    corecore