471 research outputs found
Ancient Yersinia pestis genomes from across Western Europe reveal early diversification during the First Pandemic (541–750)
The first historically documented pandemic caused by Yersinia pestis began as the Justinianic Plague in 541 within the Roman Empire and continued as the so-called First Pandemic until 750. Although paleogenomic studies have previously identified the causative agent as Y. pestis, little is known about the bacterium’s spread, diversity, and genetic history over the course of the pandemic. To elucidate the microevolution of the bacterium during this time period, we screened human remains from 21 sites in Austria, Britain, Germany, France, and Spain for Y. pestis DNA and reconstructed eight genomes. We present a methodological approach assessing single-nucleotide polymorphisms (SNPs) in ancient bacterial genomes, facilitating qualitative analyses of low coverage genomes from a metagenomic background. Phylogenetic analysis on the eight reconstructed genomes reveals the existence of previously undocumented Y. pestis diversity during the sixth to eighth centuries, and provides evidence for the presence of multiple distinct Y. pestis strains in Europe. We offer genetic evidence for the presence of the Justinianic Plague in the British Isles, previously only hypothesized from ambiguous documentary accounts, as well as the parallel occurrence of multiple derived strains in central and southern France, Spain, and southern Germany. Four of the reported strains form a polytomy similar to others seen across the Y. pestis phylogeny, associated with the Second and Third Pandemics. We identified a deletion of a 45-kb genomic region in the most recent First Pandemic strains affecting two virulence factors, intriguingly overlapping with a deletion found in 17th- to 18th-century genomes of the Second Pandemic. © 2019 National Academy of Sciences. All rights reserved
An upper limit on hypertriton production in collisions of Ar(1.76 AGeV)+KCl
A high-statistic data sample of Ar(1.76 AGeV)+KCl events recorded with HADES
is used to search for a hypertriton signal. An upper production limit per
centrality-triggered event of x on the level is
derived. Comparing this value with the number of successfully reconstructed
hyperons allows to determine an upper limit on the ratio
, which is confronted with statistical and
coalescence-type model calculations
The interaction studied via femtoscopy in p + Nb reactions at
We report on the first measurement of and correlations via
the femtoscopy method in p+Nb reactions at , studied with the High Acceptance Di-Electron Spectrometer
(HADES). By comparing the experimental correlation function to model
calculations, a source size for pairs of and a slightly
smaller value for of is extracted.
Using the geometrical extent of the particle emitting region, determined
experimentally with correlations as reference together with a source
function from a transport model, it is possible to study different sets of
scattering parameters. The correlation is proven sensitive to
predicted scattering length values from chiral effective field theory. We
demonstrate that the femtoscopy technique can be used as valid alternative to
the analysis of scattering data to study the hyperon-nucleon interaction.Comment: 12 pages, 11 figure
"I am your mother and your father!": In vitro derived gametes and the ethics of solo reproduction
In this paper, we will discuss the prospect of human reproduction achieved with gametes originating from only one person. According to statements by a minority of scientists working on the generation of gametes in vitro, it may become possible to create eggs from men’s non-reproductive cells and sperm from women’s. This would enable, at least in principle, the creation of an embryo from cells obtained from only one individual: ‘solo reproduction’. We will consider what might motivate people to reproduce in this way, and the implications that solo reproduction might have for ethics and policy. We suggest that such an innovation is unlikely to revolutionise reproduction and parenting. Indeed, in some respects it is less revolutionary than in vitro fertilisation as a whole. Furthermore, we show that solo reproduction with in vitro created gametes is not necessarily any more ethically problematic than gamete donation—and probably less so. Where appropriate, we draw parallels with the debate surrounding reproductive cloning. We note that solo reproduction may serve to perpetuate reductive geneticised accounts of reproduction, and that this may indeed be ethically questionable. However, in this it is not unique among other technologies of assisted reproduction, many of which focus on genetic transmission. It is for this reason that a ban on solo reproduction might be inconsistent with continuing to permit other kinds of reproduction that also bear the potential to strengthen attachment to a geneticised account of reproduction. Our claim is that there are at least as good reasons to pursue research towards enabling solo reproduction, and eventually to introduce solo reproduction as an option for fertility treatment, as there are to do so for other infertility related purposes
The dendritic cell dilemma in the skin: between tolerance and immunity
Dendritic cells (DC) are uniquely capable of initiating and directing immune responses. The range of their activities grounds in the heterogeneity of DC subsets and their functional plasticity. Numerical and functional DC changes influence the development and progression of disease, and correction of such dysregulations has the potential to treat disease causally. In this review, we discuss the major advances in our understanding of the regulation of DC lineage formation, differentiation, and function in the skin. We describe the alteration of DC in disease as well as possibilities for therapeutic reprogramming with a focus on tolerogenic DC. Because regulatory T cells (Treg) are indispensable partners of DC in the induction and control of tolerance, we pay special attention to the interactions with these cells. Above all, we would like to arouse fascination for this cell type and its therapeutic potential in skin diseases
New data on the differential cross section of the dp-elastic scattering at 2.5 GeV obtained with HADES detector
New results on the differential cross section in deuteron-proton elastic scattering are obtained at the deuteron kinetic energy of 2.5 GeV with the HADES spectrometer. The angular range of 69°-125° in the center of mass system is covered. The obtained results are compared with the relativistic multiple scattering model calculation using the CD-Bonn deuteron wave function. The data at fixed scattering angles in the c.m. are in qualitative agreement with the constituent counting rules prediction
Double pion production in np and pp collisions at 1.25 GeV with HADES
The results of double pion production in np and pp collisions at an incident beam energy of 1.25 GeV with the HADES spectrometer at GSI are presented. The np-reactions were studied in d p collisions at 1.25 GeV/u using Forward Wall hodoscope aimed at registering spectator protons. High statistic invariantmass and angular distributions are obtained within the HADES acceptance which are compared with phase-space distributions
- …
