10 research outputs found

    The coming decade of digital brain research: a vision for neuroscience at the intersection of technology and computing

    Get PDF
    In recent years, brain research has indisputably entered a new epoch, driven by substantial methodological advances and digitally enabled data integration and modelling at multiple scales— from molecules to the whole brain. Major advances are emerging at the intersection of neuroscience with technology and computing. This new science of the brain combines high-quality research, data integration across multiple scales, a new culture of multidisciplinary large-scale collaboration and translation into applications. As pioneered in Europe’s Human Brain Project (HBP), a systematic approach will be essential for meeting the coming decade’s pressing medical and technological challenges. The aims of this paper are to: develop a concept for the coming decade of digital brain research, discuss this new concept with the research community at large, to identify points of convergence, and derive therefrom scientific common goals; provide a scientific framework for the current and future development of EBRAINS, a research infrastructure resulting from the HBP’s work; inform and engage stakeholders, funding organisations and research institutions regarding future digital brain research; identify and address the transformational potential of comprehensive brain models for artificial intelligence, including machine learning and deep learning; outline a collaborative approach that integrates reflection, dialogues and societal engagement on ethical and societal opportunities and challenges as part of future neuroscience research

    Sex‐related differences in aging rate are associated with sex chromosome system in amphibians

    Get PDF
    Sex-related differences in mortality are widespread in the animal kingdom. Although studies have shown that sex determination systems might drive lifespan evolution, sex chromosome influences on aging rates have not been investigated so far, likely due to an apparent lack of demographic data from clades including both XY (with heterogametic males) and ZW (heterogametic females) systems. Taking advantage of a unique collection of capture-recapture datasets in amphibians, a vertebrate group where XY and ZW systems have repeatedly evolved over the past 200 million years, we examined whether sex heterogamy can predict sex differences in aging rates and lifespans. We showed that the strength and direction of sex differences in aging rates (and not lifespan) differ between XY and ZW systems. Sex-specific variation in aging rates were moderate within each system, but aging rates tended to be consistently higher in the heterogametic sex. This led to small but detectable effects of sex chromosome system on sex differences in aging rates in our models. Although preliminary, our results suggest that exposed recessive deleterious mutations on the X/Z chromosome (the ‘unguarded X/Z effect’) or repeat-rich Y/W chromosome (the ‘toxic Y/W effect’) could accelerate aging in the heterogametic sex in some vertebrate clades

    The coming decade of digital brain research - A vision for neuroscience at the intersection of technology and computing

    No full text
    Brain research has in recent years indisputably entered a new epoch, driven by substantial methodological advances and digitally enabled data integration and modeling at multiple scales – from molecules to the whole system. Major advances are emerging at the intersection of neuroscience with technology and computing. This new science of the brain integrates high-quality basic research, systematic data integration across multiple scales, a new culture of large-scale collaboration and translation into applications. A systematic approach, as pioneered in Europe’s Human Brain Project (HBP), will be essential in meeting the pressing medical and technological challenges of the coming decade. The aims of this paper are To develop a concept for the coming decade of digital brain research To discuss it with the research community at large, with the aim of identifying points of convergence and common goals To provide a scientific framework for current and future development of EBRAINS To inform and engage stakeholders, funding organizations and research institutions regarding future digital brain research To identify and address key ethical and societal issues While we do not claim that there is a ‘one size fits all’ approach to addressing these aspects, we are convinced that discussions around the theme of digital brain research will help drive progress in the broader field of neuroscience. Comments on this manuscript are welcome This manuscript is a living document that is being further developed in a participatory process. The work has been initiated by the Science and Infrastructure Board of the Human Brain Project (HBP). Now, the entire research community is invited to contribute to shaping the vision by submitting comments. Comments can be submitted via an online commentary form here. All submitted comments will be considered and discussed. The final decision on whether edits or additions will be made to the next version of the manuscript based on an individual comment will be made by the Science and Infrastructure Board (SIB) of the Human Brain Project (HBP) at regular intervals. New versions of the manuscript will be published every few months on Zenodo. Comments may be submitted until the beginning of 2023. During the Human Brain Project Summit 2023, the manuscript will be adopted by HBP and non-HBP participants, and a final version will be published shortly after

    The coming decade of digital brain research - A vision for neuroscience at the intersection of technology and computing

    No full text
    <p>Brain research has in recent years indisputably entered a new epoch, driven by substantial methodological advances and digitally enabled data integration and modeling at multiple scales – from molecules to the whole system. Major advances are emerging at the intersection of neuroscience with technology and computing. This new science of the brain integrates high-quality basic research, systematic data integration across multiple scales, a new culture of large-scale collaboration and translation into applications. A systematic approach, as pioneered in Europe's Human Brain Project (HBP), will be essential in meeting the pressing medical and technological challenges of the coming decade. The aims of this paper are</p><ul><li>To develop a concept for the coming decade of digital brain research</li><li>To discuss it with the research community at large, with the aim of identifying points of convergence and common goals</li><li>To provide a scientific framework for current and future development of EBRAINS</li><li>To inform and engage stakeholders, funding organizations and research institutions regarding future digital brain research</li><li>To identify and address key ethical and societal issues</li></ul><p>While we do not claim that there is a 'one size fits all' approach to addressing these aspects, we are convinced that discussions around the theme of digital brain research will help drive progress in the broader field of neuroscience.</p><p><strong>As the final version 5 has now been published, comments on this manuscript are now closed. We thank everyone who made a valuable contribution to this paper.</strong></p><p>This manuscript has been developed in a participatory process. The work has been initiated by the Science and Infrastructure Board of the Human Brain Project (HBP), and the entire research community was invited to contribute to shaping the vision by submitting comments. </p><p>All submitted comments were considered and discussed. The final decision on whether edits or additions was made to each version of the manuscript based on an individual comment was made by the Science and Infrastructure Board (SIB) of the Human Brain Project (HBP).</p><p><strong>Supporters of the paper</strong>: Pietro Avanzini, Marc Beyer, Maria Del Vecchio, Jitka Annen, Maurizio Mattia, Steven Laureys, Rosanne Edelenbosch, Rafael Yuste, Jean-Pierre Changeux, Linda Richards, Hye Weon Jessica Kim, Chrysoula Samara, Luis Miguel González de la Garza, Nikoleta Petalidou, Vasudha Kulkarni, Cesar David Rincon, Isabella O'Shea, Munira Tamim Electricwala, Bernd Carsten Stahl, Bahar Hazal Yalcinkaya, Meysam Hashemi, Carola Sales Carbonell, Marcel Carrère, Anthony Randal McIntosh, Hiba Sheheitli, Abolfazl Ziaeemehr, Martin Breyton, Giovanna Ramos Queda, Anirudh NIhalani Vattikonda, Gyorgy Buzsaki, George Ogoh, William Knight, Torbjørn V Ness, Michiel van der Vlag, Marcello Massimini, Thomas Nowontny, Alex Upton, Yaseen Jakhura, Ahmet Nihat Simsek, Michael Hopkins, Addolorata Marasco, Shamim Patel, Jakub Fil, Diego Molinari, Susana Bueno, Lia Domide, Cosimo Lupo, Mu-ming Poo, George Paxinos, Huifang Wang.</p&gt

    Natural and Synthetic Rubbers

    No full text

    Imaging Perception

    No full text

    Linkage Map of Escherichia coli

    No full text
    corecore