348 research outputs found
Food Webs: Experts Consuming Families of Experts
The question what determines the structure of natural food webs has been
listed among the nine most important unanswered questions in ecology. It arises
naturally from many problems related to ecosystem stability and resilience. The
traditional view is that population-dynamical stability is crucial for
understanding the observed structures. But phylogeny (evolutionary history) has
also been suggested as the dominant mechanism. Here we show that observed
topological features of predatory food webs can be reproduced to unprecedented
accuracy by a mechanism taking into account only phylogeny, size constraints,
and the heredity of the trophically relevant traits of prey and predators. The
analysis reveals a tendency to avoid resource competition rather than apparent
competition. In food webs with many parasites this pattern is reversed.Comment: 16 pages, 3 figures, 1 table + Appendix of 36 pages, 18 figures.
movie available from http://ag.rossberg.net/matching.mp
Phase synchronization from noisy univariate signals
We present methods for detecting phase synchronization of two
unidirectionally coupled, self-sustained noisy oscillators from a signal of the
driven oscillator alone. One method detects soft, another hard phase locking.
Both are applied to the problem of detecting phase synchronization in von
Karman vortex flow meters.Comment: 4 pages, 4 figure
Three-dimensional pattern formation, multiple homogeneous soft modes, and nonlinear dielectric electroconvection
Patterns forming spontaneously in extended, three-dimensional, dissipative
systems are likely to excite several homogeneous soft modes (
hydrodynamic modes) of the underlying physical system, much more than quasi
one- and two-dimensional patterns are. The reason is the lack of damping
boundaries. This paper compares two analytic techniques to derive the patten
dynamics from hydrodynamics, which are usually equivalent but lead to different
results when applied to multiple homogeneous soft modes. Dielectric
electroconvection in nematic liquid crystals is introduced as a model for
three-dimensional pattern formation. The 3D pattern dynamics including soft
modes are derived. For slabs of large but finite thickness the description is
reduced further to a two-dimensional one. It is argued that the range of
validity of 2D descriptions is limited to a very small region above threshold.
The transition from 2D to 3D pattern dynamics is discussed. Experimentally
testable predictions for the stable range of ideal patterns and the electric
Nusselt numbers are made. For most results analytic approximations in terms of
material parameters are given.Comment: 29 pages, 2 figure
Continuing WebAssembly with Effect Handlers
WebAssembly (Wasm) is a low-level portable code format offering near native performance. It is intended as a compilation target for a wide variety of source languages. However, Wasm provides no direct support for non-local control flow features such as async/await, generators/iterators, lightweight threads, first-class continuations, etc. This means that compilers for source languages with such features must ceremoniously transform whole source programs in order to target Wasm. We present WasmFX an extension to Wasm which provides a universal target for non-local control features via effect handlers, enabling compilers to translate such features directly into Wasm. Our extension is minimal and only adds three main instructions for creating, suspending, and resuming continuations. Moreover, our primitive instructions are type-safe providing typed continuations which are well-aligned with the design principles of Wasm whose stacks are typed. We present a formal specification of WasmFX and show that the extension is sound. We have implemented WasmFX as an extension to the Wasm reference interpreter and also built a prototype WasmFX extension for Wasmtime, a production-grade Wasm engine, piggybacking on Wasmtime's existing fibers API. The preliminary performance results for our prototype are encouraging, and we outline future plans to realise a native implementation
Some Properties of the Speciation Model for Food-Web Structure - Mechanisms for Degree Distributions and Intervality
We present a mathematical analysis of the speciation model for food-web
structure, which had in previous work been shown to yield a good description of
empirical data of food-web topology. The degree distributions of the network
are derived. Properties of the speciation model are compared to those of other
models that successfully describe empirical data. It is argued that the
speciation model unifies the underlying ideas of previous theories. In
particular, it offers a mechanistic explanation for the success of the niche
model of Williams and Martinez and the frequent observation of intervality in
empirical food webs.Comment: 23 pages, 6 figures, minor rewrite
An explanatory model for food-web structure and evolution
Food webs are networks describing who is eating whom in an ecological
community. By now it is clear that many aspects of food-web structure are
reproducible across diverse habitats, yet little is known about the driving
force behind this structure. Evolutionary and population dynamical mechanisms
have been considered. We propose a model for the evolutionary dynamics of
food-web topology and show that it accurately reproduces observed food-web
characteristic in the steady state. It is based on the observation that most
consumers are larger than their resource species and the hypothesis that
speciation and extinction rates decrease with increasing body mass. Results
give strong support to the evolutionary hypothesis.Comment: 16 pages, 3 figure
Understanding the local structure of Eu3+- and Y3+-stabilized zirconia: insights from luminescence and X-ray absorption spectroscopic investigations
This study combines bulk structural and spectroscopic investigations of Eu- or Y/Eu co-doped tetragonal and cubic zirconia polymorphs to gain an indepth understanding of the solid solution formation process. Our bulk structural characterizations show that the dopant is homogenously distributed in the ZrO host structure resulting in an increase of the bulk symmetry with increasing dopant substitution (from 8 to 26 mol%). The local site symmetry around the Eu dopant, however, determined with luminescence spectroscopy (TRLFS), remains low in all samples. Results obtained with X-ray pair distribution function and X-ray absorption spectroscopy show that the average coordination environment in the stabilized zirconia structures remains practically unchanged. Despite this very constant average dopant environment, siteselective TRLFS data show the presence of three nonequivalent Eu environments in the ZrO solid structures. These Eu environments are assumed to arise from Eu incorporation at superficial sites, which increase in abundance as the size of the crystallites decrease, and incorporation on two bulk sites differing in the location of the oxygen vacancies with respect to the dopant cation
Data driven optimal filtering for phase and frequency of noisy oscillations: application to vortex flowmetering
A new method for extracting the phase of oscillations from noisy time series
is proposed. To obtain the phase, the signal is filtered in such a way that the
filter output has minimal relative variation in the amplitude (MIRVA) over all
filters with complex-valued impulse response. The argument of the filter output
yields the phase. Implementation of the algorithm and interpretation of the
result are discussed. We argue that the phase obtained by the proposed method
has a low susceptibility to measurement noise and a low rate of artificial
phase slips. The method is applied for the detection and classification of mode
locking in vortex flowmeters. A novel measure for the strength of mode locking
is proposed.Comment: 12 pages, 10 figure
A Grassmann integral equation
The present study introduces and investigates a new type of equation which is
called Grassmann integral equation in analogy to integral equations studied in
real analysis. A Grassmann integral equation is an equation which involves
Grassmann integrations and which is to be obeyed by an unknown function over a
(finite-dimensional) Grassmann algebra G_m. A particular type of Grassmann
integral equations is explicitly studied for certain low-dimensional Grassmann
algebras. The choice of the equation under investigation is motivated by the
effective action formalism of (lattice) quantum field theory. In a very general
setting, for the Grassmann algebras G_2n, n = 2,3,4, the finite-dimensional
analogues of the generating functionals of the Green functions are worked out
explicitly by solving a coupled system of nonlinear matrix equations. Finally,
by imposing the condition G[{\bar\Psi},{\Psi}] = G_0[{\lambda\bar\Psi},
{\lambda\Psi}] + const., 0<\lambda\in R (\bar\Psi_k, \Psi_k, k=1,...,n, are the
generators of the Grassmann algebra G_2n), between the finite-dimensional
analogues G_0 and G of the (``classical'') action and effective action
functionals, respectively, a special Grassmann integral equation is being
established and solved which also is equivalent to a coupled system of
nonlinear matrix equations. If \lambda \not= 1, solutions to this Grassmann
integral equation exist for n=2 (and consequently, also for any even value of
n, specifically, for n=4) but not for n=3. If \lambda=1, the considered
Grassmann integral equation has always a solution which corresponds to a
Gaussian integral, but remarkably in the case n=4 a further solution is found
which corresponds to a non-Gaussian integral. The investigation sheds light on
the structures to be met for Grassmann algebras G_2n with arbitrarily chosen n.Comment: 58 pages LaTeX (v2: mainly, minor updates and corrections to the
reference section; v3: references [4], [17]-[21], [39], [46], [49]-[54],
[61], [64], [139] added
Contrasting changes in the abundance and diversity of North American bird assemblages from 1971 to 2010
This article is based upon work from COST Action ES1101 "Harmonising Global Biodiversity Modelling" (Harmbio), supported by COST (European Cooperation in Science and Technology).Although it is generally recognized that global biodiversity is declining, few studies have examined long-term changes in multiple biodiversity dimensions simultaneously. In this study we quantified and compared temporal changes in the abundance, taxonomic diversity, functional diversity and phylogenetic diversity of bird assemblages, using roadside monitoring data of the North American Breeding Bird Survey from 1971 to 2010. We calculated 12 abundance and diversity metrics based on five year average abundances of 519 species for each of 768 monitoring routes. We did this for all bird species together as well as for four sub-groups based on breeding habitat affinity (grassland, woodland, wetland and shrubland breeders). The majority of the biodiversity metrics increased or remained constant over the study period, whereas the overall abundance of birds showed a pronounced decrease, primarily driven by declines of the most abundant species. These results highlight how stable or even increasing metrics of taxonomic, functional or phylogenetic diversity may occur in parallel with substantial losses of individuals. We further found that patterns of change differed among the species sub-groups, with both abundance and diversity increasing for woodland birds and decreasing for grassland breeders. The contrasting changes between abundance and diversity and among the breeding habitat groups underscore the relevance of a multi-faceted approach to measuring biodiversity change. Our findings further stress the importance of monitoring the overall abundance of individuals in addition to metrics of taxonomic, functional or phylogenetic diversity, thus confirming the importance of population abundance as an essential biodiversity variable.Publisher PDFPeer reviewe
- …