The present study introduces and investigates a new type of equation which is
called Grassmann integral equation in analogy to integral equations studied in
real analysis. A Grassmann integral equation is an equation which involves
Grassmann integrations and which is to be obeyed by an unknown function over a
(finite-dimensional) Grassmann algebra G_m. A particular type of Grassmann
integral equations is explicitly studied for certain low-dimensional Grassmann
algebras. The choice of the equation under investigation is motivated by the
effective action formalism of (lattice) quantum field theory. In a very general
setting, for the Grassmann algebras G_2n, n = 2,3,4, the finite-dimensional
analogues of the generating functionals of the Green functions are worked out
explicitly by solving a coupled system of nonlinear matrix equations. Finally,
by imposing the condition G[{\bar\Psi},{\Psi}] = G_0[{\lambda\bar\Psi},
{\lambda\Psi}] + const., 0<\lambda\in R (\bar\Psi_k, \Psi_k, k=1,...,n, are the
generators of the Grassmann algebra G_2n), between the finite-dimensional
analogues G_0 and G of the (``classical'') action and effective action
functionals, respectively, a special Grassmann integral equation is being
established and solved which also is equivalent to a coupled system of
nonlinear matrix equations. If \lambda \not= 1, solutions to this Grassmann
integral equation exist for n=2 (and consequently, also for any even value of
n, specifically, for n=4) but not for n=3. If \lambda=1, the considered
Grassmann integral equation has always a solution which corresponds to a
Gaussian integral, but remarkably in the case n=4 a further solution is found
which corresponds to a non-Gaussian integral. The investigation sheds light on
the structures to be met for Grassmann algebras G_2n with arbitrarily chosen n.Comment: 58 pages LaTeX (v2: mainly, minor updates and corrections to the
reference section; v3: references [4], [17]-[21], [39], [46], [49]-[54],
[61], [64], [139] added