113 research outputs found
Transcriptomics of early responses to purified Piscine orthoreovirus-1 in Atlantic salmon (Salmo salar L.) red blood cells compared to non-susceptible cell lines
Piscine red blood cells (RBC) are nucleated and have been characterized as mediators of immune responses in addition to their role in gas exchange. Salmonid RBC are major target cells of Piscine orthoreovirus-1 (PRV-1), the etiological agent of heart and skeletal muscle inflammation (HSMI) in farmed Atlantic salmon (Salmo salar). PRV-1 replicates in RBC ex vivo, but no viral amplification has been possible in available A. salmon cell lines. To compare RBC basal transcripts and transcriptional responses to PRV-1 in the early phase of infection with non-susceptible cells, we exposed A. salmon RBC, Atlantic salmon kidney cells (ASK) and Salmon head kidney cells (SHK-1) to PRV-1 for 24 h. The RNA-seq analysis of RBC supported their previous characterization as pluripotent cells, as they expressed a wide repertoire of genes encoding pattern recognition receptors (PRRs), cytokine receptors, and genes implicated in antiviral activities. The comparison of RBC to ASK and SHK-1 revealed immune cell features exclusively expressed in RBC, such as genes involved in chemotactic activity in response to inflammation. Differential expression analysis of RBC exposed to PRV-1 showed 46 significantly induced genes (≥ 2-fold upregulation) linked to the antiviral response pathway, including RNA-specific PRRs and interferon (IFN) response factors. In SHK-1, PRV induced a more potent or faster antiviral response (213 genes induced). ASK cells showed a differential response pattern (12 genes induced, 18 suppressed) less characterized by the dsRNA-induced antiviral pathway. Despite these differences, the RIG-I-like receptor 3 (RLR3) in the family of cytosolic dsRNA receptors was significantly induced in all PRV-1 exposed cells. IFN regulatory factor 1 (IRF1) was significantly induced in RBC only, in contrast to IRF3/IRF7 induced in SHK-1. Differences in IRF expression and activity may potentially affect viral propagation
Maritime Operations and Emergency Preparedness in the Arctic–Competence Standards for Search and Rescue Operations Contingencies in Polar Waters
Emergencies on large passenger ships in the remote High North may lead to a mass rescue operation with a heavy strain on the emergency preparedness systems of the Arctic countries. This study focuses on the need for competencies related to large-scale Search and Rescue operations (SAR operations) amongst the shipping companies, vessels and governments involved. A SAR operation is the activity related to finding and rescuing people in distress. Several international standards, in particular the conventions by the International Maritime Organization (IMO), provide direction for education and training of seafarers and rescue staff. This study elaborates on the operational competence requirements for key personnel involved in large scale SAR operations. Findings from real SAR incidents and exercises provide in-depth understanding on the operational challenges. The chapter gives directions for competence programs, beyond obligatory international standards, and recommendations for further research
Heart and Skeletal Muscle Inflammation of Farmed Salmon Is Associated with Infection with a Novel Reovirus
Atlantic salmon (Salmo salar L.) mariculture has been associated with epidemics of infectious diseases that threaten not only local production, but also wild fish coming into close proximity to marine pens and fish escaping from them. Heart and skeletal muscle inflammation (HSMI) is a frequently fatal disease of farmed Atlantic salmon. First recognized in one farm in Norway in 1999[1], HSMI was subsequently implicated in outbreaks in other farms in Norway and the United Kingdom[2]. Although pathology and disease transmission studies indicated an infectious basis, efforts to identify an agent were unsuccessful. Here we provide evidence that HSMI is associated with infection with piscine reovirus (PRV). PRV is a novel reovirus identified by unbiased high throughput DNA sequencing and a bioinformatics program focused on nucleotide frequency as well as sequence alignment and motif analyses. Formal implication of PRV in HSMI will require isolation in cell culture and fulfillment of Koch's postulates, or prevention or modification of disease through use of specific drugs or vaccines. Nonetheless, as our data indicate that a causal relationship is plausible, measures must be taken to control PRV not only because it threatens domestic salmon production but also due to the potential for transmission to wild salmon populations
Denaturing Gradient Gel Electrophoresis (DGGE) as a Powerful Novel Alternative for Differentiation of Epizootic ISA Virus Variants
Infectious Salmon Anemia is a devastating disease critically affecting world-wide salmon production. Chile has been particularly stricken by this disease which in all cases has been directly related with its causative agent, a novel orthomyxovirus which presents specific and distinctive infective features. Among these, two molecular markers have been directly associated with pathogenicity in two of the eight RNA sub genomic coding units of the virus: an insertion hot spot region present in viral segment 5 and a Highly Polymorphic Region (HPR) located in viral segment 6. Here we report the successful adaptation of a PCR-dependent denaturing gel electrophoresis technique (DGGE), which enables differentiation of selected reported HPR epizootic variants detected in Chile. At the same time, the technique allows us to distinguish one nucleotide differences in sequences associated with the intriguing, and still not well-understood, insertion events which tend to occur on RNA Segment 5. Thus, the versatility of the technique opens new opportunities for improved understanding of the complex biology of all ISA variants as well as possible applications to other highly variable pathogens
Development of infectious cDNA clones of Salmonid alphavirus subtype 3
<p>Abstract</p> <p>Background</p> <p>Salmonid alphavirus (SAV) is a widespread pathogen in European aquaculture of salmonid fish. Distinct viral subtypes have been suggested based on sequence comparisons and some of these have different geographical distributions. In Norway, only SAV subtype 3 have so far been identified. Little is known about viral mechanisms important for pathogenesis and transmission. Tools for detailed exploration of SAV genomes are therefore needed.</p> <p>Results</p> <p>Infectious cDNA clones in which a genome of subtype 3 SAV is under the control of a CMV promoter were constructed. The clones were designed to express proteins that are putatively identical to those previously reported for the SAVH20/03 strain. A polyclonal antiserum was raised against a part of the E2 glycoprotein in order to detect expression of the subgenomic open reading frame (ORF) encoding structural viral proteins. Transfection of the cDNA clone revealed the expression of the E2 protein by IFAT, and in serial passages of the supernatant the presence of infectious recombinant virus was confirmed through RT-PCR, IFAT and the development of a cytopathic effect similar to that seen during infection with wild type SAV. Confirmation that the recovered virus originated from the infectious plasmid was done by sequence identification of an introduced genetic tag. The recombinant virus was infectious also when an additional ORF encoding an EGFP reporter gene under the control of a second subgenomic alphavirus promoter was added. Finally, we used the system to study the effect of selected point mutations on infectivity in Chinook salmon embryo cells. While introduced mutations in nsP2<sub>197</sub>, nsP3<sub>263 </sub>and nsP3<sub>323 </sub>severely reduced infectivity, a serine to proline mutation in E2<sub>206 </sub>appeared to enhance the virus titer production.</p> <p>Conclusion</p> <p>We have constructed infectious clones for SAV based on a subtype 3 genome. The clones may serve as a platform for further functional studies.</p
Dynamics of serum antibodies to and load of porcine circovirus type 2 (PCV2) in pigs in three finishing herds, affected or not by postweaning multisystemic wasting syndrome
Background: Despite that PMWS commonly affects pigs aged eight to sixteen weeks; most studies of PMWS have been conducted during the period before transfer to finishing herds. This study focused on PCV2 load and antibody dynamics in finishing herds with different PMWS status.
Methods: Sequentially collected blood samples from 40 pigs in each of two Swedish (A and B) and one Norwegian (C) finishing herds were analysed for serum PCV2-load and -antibodies and saliva cortisol. The two Swedish herds differed in PMWS status, despite receiving animals from the same sow pool (multi-site production). However, the PMWS-deemed herd (A) had previously also received pigs from the spot market. ResultsThe initial serum PCV2 load was similar in the two Swedish herds. In herd A, it peaked after two weeks in the finishing herd and a high number of the pigs had serum PCV2 levels above 10(7) per ml. The antibody titres increased continually with exception for the pigs that developed PMWS, that had initially low and then declining antibody levels. Pigs in the healthy herd B also expressed high titres of antibodies to PCV2 on arrival but remained at that level throughout the study whereas the viral load steadily decreased. No PCV2 antibodies and only low amounts of PCV2 DNA were detected in serum collected during the first five weeks in the PMWS-free herd C. Thereafter a peak in serum PCV2 load accompanied by an antibody response was recorded. PCV2 from the two Swedish herds grouped into genotype PCV2b whereas the Norwegian isolate grouped into PCV2a. Cortisol levels were lower in herd C than in herds A and B.
Conclusions: The most obvious difference between the Swedish finishing herds and the Norwegian herd was the time of infection with PCV2 in relation to the time of allocation, as well as the genotype of PCV2. Clinical PMWS was preceded by low levels of serum antibodies and a high load of PCV2 but did not develop in all such animals. It is notable that herd A became affected by PMWS after errors in management routine, emphasising the importance of proper hygiene and general disease-preventing measures
The consequences of reservoir host eradication on disease epidemiology in animal communities.
Non-native species have often been linked with introduction of novel pathogens that spill over into native communities, and the amplification of the prevalence of native parasites. In the case of introduced generalist pathogens, their disease epidemiology in the extant communities remains poorly understood. Here, Sphaerothecum destruens, a generalist fungal-like fish pathogen with bi-modal transmission (direct and environmental) was used to characterise the biological drivers responsible for disease emergence in temperate fish communities. A range of biotic factors relating to both the pathogen and the surrounding host communities were used in a novel susceptible-exposed-infectious-recovered (SEIR) model to test how these factors affected disease epidemiology. These included: (i) pathogen prevalence in an introduced reservoir host (Pseudorasbora parva); (ii) the impact of reservoir host eradication and its timing and (iii) the density of potential hosts in surrounding communities and their connectedness. These were modelled across 23 combinations and indicated that the spill-over of pathogen propagules via environmental transmission resulted in rapid establishment in adjacent fish communities (<1 year). Although disease dynamics were initially driven by environmental transmission in these communities, once sufficient numbers of native hosts were infected, the disease dynamics were driven by intra-species transmission. Subsequent eradication of the introduced host, irrespective of its timing (after one, two or three years), had limited impact on the long-term disease dynamics among local fish communities. These outputs reinforced the importance of rapid detection and eradication of non-native species, in particular when such species are identified as healthy reservoirs of a generalist pathogen
- …