33 research outputs found

    A Hepta-band Antenna Loaded with E-shaped Slot for S/C/X-band Applications

    Get PDF
    A compact planar multiband antenna operating at 3.1 (S-band) /4.7/6.4/7.6 (C-band) /8.9/10.4/11.8 GHz (X-band) is presented. The proposed Microstrip Patch Antenna (MSPA) consists of a rectangular radiator in which an E-shaped slot is etched out and a microstrip feed line. The E-shaped slot modifies the total current path thereby making the antenna to operate at seven useful bands. No external impedance matching circuit is used and the impedance matching at these bands are solely achieved by using a rectangular microstrip feed line of length 10mm (L6) and width 2mm (W10). The antenna has a compact dimension of and exhibits S11<-10dB bandwidth of about 6.45% (3.2-3.0GHz), 8.5% (4.9-4.5GHz), 7.6% (6.7-6.2GHz), 3.9% (7.8-7.5GHz), 5.7% (9.1-8.6GHz), 1.2% (10.44-10.35GHz) and 2.2% (11.87-11.62GHz). The simulation analysis of the antenna is carried out by using HFSS v.13.

    Analysis of C-shape slotted MSPA for 5G sub band applications on three different substrates

    Get PDF
    A comparative analysis of a compact planar Squarepatch Microstrip Multiband antenna on three different substratesis proposed. The proposed design has a C-shaped slot etched on thesquare radiating part and the antenna is energized usingmicrostrip feed line. RT Duroid

    A Sierpinski Carpet Five Band Antenna for Wireless Applications

    Get PDF
    A compact Sierpinski Carpet square fractal multiband antenna operating at 3.9 (WiMAX) /6.6 (Satellite TV) /8.1/10.7/11.8 GHz (X-band) is presented. The proposed Microstrip Patch Antenna (MSPA) consists of a Sierpinski Carpet square fractal radiator in which square slots are etched out and a tapered microstrip feed line. The Sierpinski Carpet square fractal patch modifies the current resonant path thereby making the antenna to operate at five useful bands. Impedance matching at these bands are solely achieved by using Sierpinski square slot and tapered feedline, thus eliminating the need of any external matching circuit. The dimensions of the compact antenna is  and exhibits S11<-10dB bandwidth of about 4.8% (4.01-3.82 GHz), 2.1% (6.62-6.48 GHz), 2.7% (8.24-8.02 GHz), 2.1% (10.77-10.54 GHz) and 21% (12.1-11.60 GHz) with the gain of 7.57/3.91/3.77/6.74/1.33 dB at the operating frequencies 3.9/6.6/8.1/10.7 and 11.8 GHz, respectively under simulation analysis carried out by using HFSS v.13.0

    Genetic Variations and Haplotype Diversity of the UGT1 Gene Cluster in the Chinese Population

    Get PDF
    Vertebrates require tremendous molecular diversity to defend against numerous small hydrophobic chemicals. UDP-glucuronosyltransferases (UGTs) are a large family of detoxification enzymes that glucuronidate xenobiotics and endobiotics, facilitating their excretion from the body. The UGT1 gene cluster contains a tandem array of variable first exons, each preceded by a specific promoter, and a common set of downstream constant exons, similar to the genomic organization of the protocadherin (Pcdh), immunoglobulin, and T-cell receptor gene clusters. To assist pharmacogenomics studies in Chinese, we sequenced nine first exons, promoter and intronic regions, and five common exons of the UGT1 gene cluster in a population sample of 253 unrelated Chinese individuals. We identified 101 polymorphisms and found 15 novel SNPs. We then computed allele frequencies for each polymorphism and reconstructed their linkage disequilibrium (LD) map. The UGT1 cluster can be divided into five linkage blocks: Block 9 (UGT1A9), Block 9/7/6 (UGT1A9, UGT1A7, and UGT1A6), Block 5 (UGT1A5), Block 4/3 (UGT1A4 and UGT1A3), and Block 3′ UTR. Furthermore, we inferred haplotypes and selected their tagSNPs. Finally, comparing our data with those of three other populations of the HapMap project revealed ethnic specificity of the UGT1 genetic diversity in Chinese. These findings have important implications for future molecular genetic studies of the UGT1 gene cluster as well as for personalized medical therapies in Chinese

    miRNAs in Newt Lens Regeneration: Specific Control of Proliferation and Evidence for miRNA Networking

    Get PDF
    Background: Lens regeneration in adult newts occurs via transdifferentiation of the pigment epithelial cells (PECs) of the dorsal iris. The same source of cells from the ventral iris is not able to undergo this process. In an attempt to understand this restriction we have studied in the past expression patterns of miRNAs. Among several miRNAs we have found that mir-148 shows an up-regulation in the ventral iris, while members of the let-7 family showed down-regulation in dorsal iris during dedifferentiation. Methodology/Principal Findings: We have performed gain- and loss-of–function experiments of mir-148 and let-7b in an attempt to delineate their function. We find that up-regulation of mir-148 caused significant decrease in the proliferation rates of ventral PECs only, while up-regulation of let-7b affected proliferation of both dorsal and ventral PECs. Neither miRNA was able to affect lens morphogenesis or induction. To further understand how this effect of miRNA up-regulation is mediated we examined global expression of miRNAs after up-regulation of mir148 and let-7b. Interestingly, we identified a novel level of mirRNA regulation, which might indicate that miRNAs are regulated as a network. Conclusion/Significance: The major conclusion is that different miRNAs can control proliferation in the dorsal or ventral iris possibly by a different mechanism. Of interest is that down-regulation of the let-7 family members has also been documented in other systems undergoing reprogramming, such as in stem cells or oocytes. This might indicate tha

    Protein Function Assignment through Mining Cross-Species Protein-Protein Interactions

    Get PDF
    Background: As we move into the post genome-sequencing era, an immediate challenge is how to make best use of the large amount of high-throughput experimental data to assign functions to currently uncharacterized proteins. We here describe CSIDOP, a new method for protein function assignment based on shared interacting domain patterns extracted from cross-species protein-protein interaction data. Methodology/Principal Findings: The proposed method is assessed both biologically and statistically over the genome of H. sapiens. The CSIDOP method is capable of making protein function prediction with accuracy of 95.42 % using 2,972 gene ontology (GO) functional categories. In addition, we are able to assign novel functional annotations for 181 previously uncharacterized proteins in H. sapiens. Furthermore, we demonstrate that for proteins that are characterized by GO, the CSIDOP may predict extra functions. This is attractive as a protein normally executes a variety of functions in different processes and its current GO annotation may be incomplete. Conclusions/Significance: It can be shown through experimental results that the CSIDOP method is reliable and practical in use. The method will continue to improve as more high quality interaction data becomes available and is readily scalable t

    The development and validation of a scoring tool to predict the operative duration of elective laparoscopic cholecystectomy

    Get PDF
    Background: The ability to accurately predict operative duration has the potential to optimise theatre efficiency and utilisation, thus reducing costs and increasing staff and patient satisfaction. With laparoscopic cholecystectomy being one of the most commonly performed procedures worldwide, a tool to predict operative duration could be extremely beneficial to healthcare organisations. Methods: Data collected from the CholeS study on patients undergoing cholecystectomy in UK and Irish hospitals between 04/2014 and 05/2014 were used to study operative duration. A multivariable binary logistic regression model was produced in order to identify significant independent predictors of long (> 90 min) operations. The resulting model was converted to a risk score, which was subsequently validated on second cohort of patients using ROC curves. Results: After exclusions, data were available for 7227 patients in the derivation (CholeS) cohort. The median operative duration was 60 min (interquartile range 45–85), with 17.7% of operations lasting longer than 90 min. Ten factors were found to be significant independent predictors of operative durations > 90 min, including ASA, age, previous surgical admissions, BMI, gallbladder wall thickness and CBD diameter. A risk score was then produced from these factors, and applied to a cohort of 2405 patients from a tertiary centre for external validation. This returned an area under the ROC curve of 0.708 (SE = 0.013, p  90 min increasing more than eightfold from 5.1 to 41.8% in the extremes of the score. Conclusion: The scoring tool produced in this study was found to be significantly predictive of long operative durations on validation in an external cohort. As such, the tool may have the potential to enable organisations to better organise theatre lists and deliver greater efficiencies in care

    Root cause detection of call drops using feedforward neural network

    Get PDF
    Call drop rate in GSM (Global System for Mobile Communication) network is an important key performance indicator (KPI) that directly affects customer satisfaction. The delay in identification of exact call drop reason because of multiple reasons involved in it would results in poor customer satisfaction. The TCH (traffic channel) call drops due to three different hardware causes are collected from live GSM network for 10 days and are represented in time domain. Time domain features such as mean, maximum, standard deviation etc. are extracted from each type of call drop signal which is used to train the feedfoward neural network. FF neural network is made as decision making classifier, feature vector is inputted and root cause detection information is outputted. Keywords: TCH call drops, neural network, GS

    Analysis of C-shape Slotted MSPA for 5G Sub Band Applications on Three Different Substrates

    No full text
    A comparative analysis of a compact planar Square patch Microstrip Multiband antenna on three different substrates is proposed. The proposed design has a C-shaped slot etched on the square radiating part and the antenna is energized using microstrip feed line. RT Duroid (ε r= 2.2), Taconic (ε r= 3.2) and FR4 (ε r= 4.4) substrates are used for simulation analysis. The flow of current is modified by the C-shaped slot making the antenna to resonate at 3/4 and 6 bands for RT Duroid/Taconic and FR4 substrates respectively suitable for 5G sub GHz applications. The antenna has a compact dimension of 32 × 32 × 1.6 mm 3 and exhibits a return loss, S11 of less than -10dB for all the resonating frequencies for all three substrates. The analysis has been done by considering the S11 (Return loss <-10 dB), Directivity, Antenna Gain, VSWR and surface current distribution. Table II provides the comparison of parameters for different substrate material
    corecore