12 research outputs found

    Inhibition of Aldose Reductase Prevents Experimental Allergic Airway Inflammation in Mice

    Get PDF
    The bronchial asthma, a clinical complication of persistent inflammation of the airway and subsequent airway hyper-responsiveness, is a leading cause of morbidity and mortality in critically ill patients. Several studies have shown that oxidative stress plays a key role in initiation as well as amplification of inflammation in airways. However, still there are no good anti-oxidant strategies available for therapeutic intervention in asthma pathogenesis. Most recent studies suggest that polyol pathway enzyme, aldose reductase (AR), contributes to the pathogenesis of oxidative stress-induced inflammation by affecting the NF-kappaB-dependent expression of cytokines and chemokines and therefore inhibitors of AR could be anti-inflammatory. Since inhibitors of AR have already gone through phase-III clinical studies for diabetic complications and found to be safe, our hypothesis is that AR inhibitors could be novel therapeutic drugs for the prevention and treatment of asthma. Hence, we investigated the efficacy of AR inhibition in the prevention of allergic responses to a common natural airborne allergen, ragweed pollen that leads to airway inflammation and hyper-responsiveness in a murine model of asthma.Primary Human Small Airway Epithelial Cells (SAEC) were used to investigate the in vitro effects of AR inhibition on ragweed pollen extract (RWE)-induced cytotoxic and inflammatory signals. Our results indicate that inhibition of AR prevents RWE -induced apoptotic cell death as measured by annexin-v staining, increase in the activation of NF-kappaB and expression of inflammatory markers such as inducible nitric oxide synthase (iNOS), cycloxygenase (COX)-2, Prostaglandin (PG) E(2), IL-6 and IL-8. Further, BALB/c mice were sensitized with endotoxin-free RWE in the absence and presence of AR inhibitor and followed by evaluation of perivascular and peribronchial inflammation, mucin production, eosinophils infiltration and airway hyperresponsiveness. Our results indicate that inhibition of AR prevents airway inflammation and production of inflammatory cytokines, accumulation of eosinophils in airways and sub-epithelial regions, mucin production in the bronchoalveolar lavage fluid and airway hyperresponsiveness in mice.These results suggest that airway inflammation due to allergic response to RWE, which subsequently activates oxidative stress-induced expression of inflammatory cytokines via NF-kappaB-dependent mechanism, could be prevented by AR inhibitors. Therefore, inhibition of AR could have clinical implications, especially for the treatment of airway inflammation, a major cause of asthma pathogenesis

    Dra/AfaE Adhesin of Uropathogenic Dr/Afa(+) Escherichia coli Mediates Mortality in Pregnant Rats

    No full text
    Escherichia coli bearing adhesins of the Dr/Afa family frequently causes urogenital infections during pregnancy in humans and has been associated with mortality in pregnant rats. Two components of the adhesin, Dra/AfaE and Dra/AfaD, considered virulence factors, are responsible for bacterial binding and internalization. We hypothesize that gestational mortality caused by Dr/Afa(+) E. coli is mediated by one of these two proteins, Dra/AfaE or Dra/AfaD. In this study, using afaE and/or afaD mutants, we investigated the role of the afaE and afaD genes in the mortality of pregnant rats from intrauterine infection. Sprague-Dawley rats, on the 17th day of pregnancy, were infected with the E. coli afaE(+) afaD and afaE afaD(+) mutants. The clinical E. coli strain (afaE(+) afaD(+)) and the afaE afaD double mutant were used as positive and negative controls, respectively. The mortality rate was evaluated 24 h after infection. The highest maternal mortality was observed in the group infected with the afaE(+) afaD(+) strain, followed by the group infected with the afaE(+) afaD strain. The mortality was dose dependent. The afaE afaD double mutant did not cause maternal mortality, even with the highest infection dose. The in vivo studies corresponded with the invasion assay, where the afaE(+) strains were the most invasive (afaE(+) afaD strain > afaE(+) afaD(+) strain), while the afaE mutant strains (afaE afaD(+) and afaE afaD strains) seemed to be noninvasive. This study shows for the first time that the afaE gene coding for the AfaE subunit of Dr/Afa adhesin is involved in the lethal outcome of gestational infection in rats. This lethal effect associated with AfaE correlates with the invasiveness of afaE(+) E. coli strains in vitro
    corecore