31 research outputs found

    Deep crustal electromagnetic structure of Bhuj earthquake region (India) and its implications

    Get PDF
    The existence of fluids and partial melt in the lower crust of the seismically active Kutch rift basin (on the western continental margin of India) owing to underplating has been proposed in previous geological and geophysical studies. This hypothesis is examined using magnetotelluric (MT) data acquired at 23 stations along two profiles across Kutch Mainland Uplift and Wagad Uplift. A detailed upper crustal structure is also presented using twodimensional inversion of MT data in the Bhuj earthquake (2001) area. The prominent boundaries of reflection in the upper crust at 5, 10 and 20 km obtained in previous seismic reflection profiles correlate with conductive structures in our models. The MT study reveals 1-2 km thick Mesozoic sediments under the Deccan trap cover. The Deccan trap thickness in this region varies from a few meters to 1.5 km. The basement is shallow on the northern side compared to the south and is in good agreement with geological models as well as drilling information. The models for these profiles indicate that the thickness of sediments would further increase southwards into the Gula of Kutch. Significant findings of the present study indicate 1) the hypocentre region of the earthquake is devoid of fluids, 2) absence of melt (that is emplaced during rifting as suggested from the passive seismological studies) in the lower crust and 3) a low resistive zone in the depth range of 5-20 km. The present MT study rules out fluids and melt (magma) as the causative factors that triggered the Bhuj earthquake. The estimated porosity value of 0.02% Hill explain 100-500 ohm•m resistivity values observed in the lower crust. Based on the seismic velocities and geochemical studies, presence of garnet is inferred. The lower crust consists of basalts - probably generated by partial melting of metasomatised garnet peridotite at beeper depths in the lithosphere - and their composition might be modified by reaction with the spinel peridotites

    Multi Indicator based Hierarchical Strategies for Technical Analysis of Crypto market Paradigm

    Get PDF
    The usage of technical analysis in the crypto market is very popular among algorithmic traders. This involves the application of strategies based on technical indicators, which shoot BUY and SELL signals to help the investors to take trading decisions. However, instead of depending on the popular myths of the market, a proper empirical analysis can be helpful in lucrative endeavors in trading cryptocurrencies. In this work, four technical indicators namely Exponential Moving Averages (EMA), Bollinger Bands (BB), Relative Strength Index (RSI), and Parabolic Stop And Reverse (PSAR) are used individually to devise strategies that are implemented, and their performance is validated using the price data of Bitcoin from yahoo finance for 2018-22, individually for each year and all the five years consolidated to compute the performance metrics including Profit percentage, Net profitability percentage, and Number of total transactions. The results show that the performance of strategies based on trend indicators is better than that of momentum indicators where the EMA strategy provided the best result with a profit percentage of 394.13%. Further, the performance of these strategies is analyzed in three different market scenarios namely Uptrend/Bullish trend, Downtrend/Bearish trend, and Fluctuating/oscillating markets to analyze the applicability of each of these smart strategies in the three scenarios. Based on the insights obtained from the analysis, Hybrid strategies using multiple indicators with a hierarchical approach are developed whose performance is further improved by imposing constraints in a Downtrend market scenario. The novelty of these algorithms is that they identify the scenario in the market using multiple indicators in a hierarchal approach, and utilize appropriate indicators as per the market scenario. Four strategies namely, Multi indicator based Hierarchical Strategy (MIHS) with EMA9, Multi indicator based Hierarchical Strategy (MIHS) with EMA7, Multi-Indicator based Hierarchical Constrained Strategy (MIHCS) with EMA9, and Multi-Indicator based Hierarchical Constrained Strategy (MIHCS) with EMA7 are developed which give profit percentage of 154.45%, 437.48%, 256.31%, and 701.77% respectively when applied on the Bitcoin price data during 2018-22

    Geophysical signatures of fluids in a reactivated Precambrian collisional suture in central India

    Get PDF
    The Central India Tectonic Zone (CITZ) marks the trace of a major suture zone along which the south Indian and the north Indian continental blocks were assembled through subduction-accretion-collision tectonics in the Mesoproterozoic. The CITZ also witnessed the major, plume-related, late Cretaceous Deccan volcanic activity, covering substantial parts of the region with continental flood basalts and associated magmatic provinces. A number of major fault zones dissect the region, some of which are seismically active. Here we present results from gravity modeling along five regional profiles in the CITZ, and combine these results with magnetotelluric (MT) modeling results to explain the crustal architecture. The models show a resistive (more than 2000 Ω·m) and a normal density (2.70 g/cm3) upper crust suggesting dominant tonalite–trondhjemite–granodiorite (TTG) composition. There is a marked correlation between both high-density (2.95 g/cm3) and low-density (2.65 g/cm3) regions with high conductive zones (<80 Ω·m) in the deep crust. We infer the presence of an interconnected grain boundary network of fluids or fluid-hosted structures, where the conductors are associated with gravity lows. Based on the conductive nature, we propose that the lower crustal rocks are fluid reservoirs, where the fluids occur as trapped phase within minerals, fluid-filled porosity, or as fluid-rich structural conduits. We envisage that substantial volume of fluids were transferred from mantle into the lower crust through the younger plume-related Deccan volcanism, as well as the reactivation, fracturing and expulsion of fluids transported to depth during the Mesoproterozoic subduction tectonics. Migration of the fluids into brittle fault zones such as the Narmada North Fault and the Narmada South Fault resulted in generating high pore pressures and weakening of the faults, as reflected in the seismicity. This inference is also supported by the presence of broad gravity lows near these faults, as well as the low velocity in the lower crust beneath regions of recent major earthquakes within the CITZ

    Adaptive Channel Estimation in OFDM System Using Cyclic Prefix (Kalman Filter Approach)

    No full text
    OFDM is a promising technique for high data rate transmission and the channel estimation is very important for implementation of OFDM. In this paper, cyclic prefix (CP) can be used as a source of channel informa-tion which is originally used to reduce inter symbol interference (ISI). Based on this CP observation, we pro-pose two cross coupled dual Kalman filters to track the channel variations without additional training se-quences. One Kalman filter AR parameter estimation and another for fading channel estimation

    Deep crustal electromagnetic structure of Bhuj earthquake region (India) and its implications

    No full text
    The existence of fluids and partial melt in the lower crust of the seismically active Kutch rift basin (on the western continental margin of India) owing to underplating has been proposed in previous geological and geophysical studies. This hypothesis is examined using magnetotelluric (MT) data acquired at 23 stations along two profiles across Kutch Mainland Uplift and Wagad Uplift. A detailed upper crustal structure is also presented using twodimensional inversion of MT data in the Bhuj earthquake (2001) area. The prominent boundaries of reflection in the upper crust at 5, 10 and 20 km obtained in previous seismic reflection profiles correlate with conductive structures in our models. The MT study reveals 1-2 km thick Mesozoic sediments under the Deccan trap cover. The Deccan trap thickness in this region varies from a few meters to 1.5 km. The basement is shallow on the northern side compared to the south and is in good agreement with geological models as well as drilling information. The models for these profiles indicate that the thickness of sediments would further increase southwards into the Gula of Kutch. Significant findings of the present study indicate 1) the hypocentre region of the earthquake is devoid of fluids, 2) absence of melt (that is emplaced during rifting as suggested from the passive seismological studies) in the lower crust and 3) a low resistive zone in the depth range of 5-20 km. The present MT study rules out fluids and melt (magma) as the causative factors that triggered the Bhuj earthquake. The estimated porosity value of 0.02% Hill explain 100-500 ohm•m resistivity values observed in the lower crust. Based on the seismic velocities and geochemical studies, presence of garnet is inferred. The lower crust consists of basalts - probably generated by partial melting of metasomatised garnet peridotite at beeper depths in the lithosphere - and their composition might be modified by reaction with the spinel peridotites

    Deep crustal electromagnetic structure of Bhuj earthquake region (India) and its implications

    No full text
    The existence of fluids and partial melt in the lower crust of the seismically active Kutch rift basin (on the western continental margin of India) owing to underplating has been proposed in previous geological and geophysical studies. This hypothesis is examined using magnetotelluric (MT) data acquired at 23 stations along two profiles across Kutch Mainland Uplift and Wagad Uplift. A detailed upper crustal structure is also presented using twodimensional inversion of MT data in the Bhuj earthquake (2001) area. The prominent boundaries of reflection in the upper crust at 5, 10 and 20 km obtained in previous seismic reflection profiles correlate with conductive structures in our models. The MT study reveals 1-2 km thick Mesozoic sediments under the Deccan trap cover. The Deccan trap thickness in this region varies from a few meters to 1.5 km. The basement is shallow on the northern side compared to the south and is in good agreement with geological models as well as drilling information. The models for these profiles indicate that the thickness of sediments would further increase southwards into the Gulf of Kutch. Significant findings of the present study indicate 1) the hypocentre region of the earthquake is devoid of fluids, 2) absence of melt (that is emplaced during rifting as suggested from the passive seismological studies) in the lower crust and 3) a low resistive zone in the depth range of 5-20 km. The present MT study rules out fluids and melt (magma) as the causative factors that triggered the Bhuj earthquake. The estimated porosity value of 0.02% will explain 100-500 ohm·m resistivity values observed in the lower crust. Based on the seismic velocities and geochemical studies, presence of garnet is inferred. The lower crust consists of basalts - probably generated by partial melting of metasomatised garnet peridotite at deeper depths in the lithosphere - and their composition might be modified by reaction with the spinel peridotites

    Energy Efficient Clustering in Multi-hop Wireless Sensor Networks Using Differential Evolutionary MOPSO

    No full text
    ABSTRACT The primary challenge in organizing sensor networks is energy efficacy. This requisite for energy efficacy is because sensor nodes capacities are limited and replacing them is not viable. This restriction further decreases network lifetime. Node lifetime varies depending on the requisites expected of its battery. Hence, primary element in constructing sensor networks is resilience to deal with decreasing lifetime of all sensor nodes. Various network infrastructures as well as their routing protocols for reduction of power utilization as well as to prolong network lifetime are studied. After analysis, it is observed that network constructions that depend on clustering are the most effective methods in terms of power utilization. Clustering divides networks into inter-related clusters such that every cluster has several sensor nodes with a Cluster Head (CH) at its head. Sensor gathered information is transmitted to data processing centers through CH hierarchy in clustered environments. The current study utilizes Multi-Objective Particle Swarm Optimization (MOPSO)-Differential Evolution (DE) (MOPSO-DE) technique for optimizing clustering
    corecore