13 research outputs found

    The Endoplasmic Reticulum Stress Response in Neuroprogressive Diseases: Emerging Pathophysiological Role and Translational Implications

    Get PDF
    The endoplasmic reticulum (ER) is the main cellular organelle involved in protein synthesis, assembly and secretion. Accumulating evidence shows that across several neurodegenerative and neuroprogressive diseases, ER stress ensues, which is accompanied by over-activation of the unfolded protein response (UPR). Although the UPR could initially serve adaptive purposes in conditions associated with higher cellular demands and after exposure to a range of pathophysiological insults, over time the UPR may become detrimental, thus contributing to neuroprogression. Herein, we propose that immune-inflammatory, neuro-oxidative, neuro-nitrosative, as well as mitochondrial pathways may reciprocally interact with aberrations in UPR pathways. Furthermore, ER stress may contribute to a deregulation in calcium homoeostasis. The common denominator of these pathways is a decrease in neuronal resilience, synaptic dysfunction and even cell death. This review also discusses how mechanisms related to ER stress could be explored as a source for novel therapeutic targets for neurodegenerative and neuroprogressive diseases. The design of randomised controlled trials testing compounds that target aberrant UPR-related pathways within the emerging framework of precision psychiatry is warranted

    Inhibition of Drp1-dependent mitochondrial fragmentation and apoptosis by a polypeptide antagonist of calcineurin

    No full text
    During apoptosis, mitochondria lose their membrane potential and undergo fragmentation around the time of release of cytochrome c. Apoptotic fission is at least in part sustained by the translocation of dynamin-related protein 1 (Drp1), normally located in the cytosol, to mitochondria. This process depends on dephosphorylation of Drp1 by the phosphatase calcineurin. Here, we report the identification of a novel inhibitor of this process. A polypeptide (PPD1) from the immunophilin FKBP52 inhibits calcineurin activation triggered by mitochondrial dysfunction. PPD1 blocks Drp1 translocation to mitochondria and fragmentation of the organelle. PPD1 delays apoptosis by intrinsic stimuli by preventing fragmentation and release of cytochrome c. Cells expressing PPD1 display enhanced clonogenic ability after exposure to staurosporine. A genetic analysis revealed that the activity of PPD1 is independent of the BH3-only protein BAD, another target of calcineurin during apoptosis, and is not additive to inhibition of Drp1. Thus, PPD1 is a novel inhibitor of apoptosis that elucidates the function of calcineurin-dependent mitochondrial fragmentation in the amplification of cell death

    During autophagy mitochondria elongate, are spared from degradation and sustain cell viability.

    No full text
    A plethora of cellular processes, including apoptosis, depend on regulated changes in mitochondrial shape and ultrastructure. Scarce is our understanding of the role of mitochondria and of their morphology during autophagy, a bulk degradation and recycling process of eukaryotic cells’ constituents. Here we show that mitochondrial morphology determines the cellular response to macroautophagy. When autophagy is triggered, mitochondria elongate in vitro and in vivo. Upon starvation cellular cAMP levels increase and protein kinase A (PKA) becomes activated. PKA in turn phosphorylates the pro-fission dynamin related protein 1 (DRP1) that is therefore retained in the cytoplasm, leading to unopposed mitochondrial fusion. Elongated mitochondria are spared from autophagic degradation, possess more cristae, increase dimerization and activity of ATP synthase, and maintain ATP production. When elongation is genetically or pharmacologically blocked, mitochondria conversely consume ATP, precipitating starvation-induced death. Thus, regulated changes in mitochondrial morphology determine the fate of the cell during autophagy
    corecore