21 research outputs found

    Protein targeting to the plasma membrane of adult skeletal muscle fiber: An organized mosaic of functional domains

    No full text
    The plasma membrane of differentiated skeletal muscle fibers comprises the sarcolemma, the transverse (T) tubule network, and the neuromuscular and muscle-tendon junctions. We analyzed the organization of these domains in relation to defined surface markers, beta -dystroglycan, dystrophin, and caveolin-3, These markers were shown to exhibit highly organized arrays along the length of the fiber. Caveolin-3 and beta -dystroglycan/dystrophin showed distinct, but to some extent overlapping, labeling patterns and both markers left transverse tubule openings clear. This labeling pattern revealed microdomains over the entire plasma membrane with the exception of the neuromuscular and muscle-tendon junctions which formed distinct demarcated macrodomains. Our results suggest that the entire plasma membrane of mature muscle comprises a mosaic of T tubule domains together with sareolemmal caveolae and beta -dystroglycan domains. The domains identified with these markers were examined with respect to targeting of viral proteins and other expressed domain-specific markers, We found that each marker protein was targeted to distinct microdomains, The macrodomains were intensely labeled with all our markers. Replacing the cytoplasmic tail of the vesicular stomatitis virus glycoprotein with that of CD4 resulted in retargeting from one domain to another. The domain-specific protein distribution at the muscle cell surface may be generated by targeting pathways requiring specific sorting information but this trafficking is different from the conventional apical-basolateral division. (C) 2001 Academic Press

    Endocytosis in skeletal muscle fibers

    No full text
    Defining the organization of endocytic pathway in multinucleated skeletal myofibers is crucial to understand the routing of membrane proteins, such as receptors and glucose transporters, through this system. Here we analyzed the organization of the endocytic trafficking pathways in isolated rat myofibers. We found that sarcolemmal-coated pits and transferrin receptors were concentrated in the I band areas. Fluid phase markers were taken up into vesicles in the same areas along the whole length of the fibers and were then delivered into structures around and between the nuclei. These markers also accumulated beneath the neuromuscular and myotendinous junctions. The recycling compartment, labeled with transferrin, appeared as perinuclear and interfibrillar dots that partially colocalized with the GLUT4 compartment. Low-density lipoprotein, a marker of the lysosome-directed pathway, was transported into sparsely distributed perinuclear and interfibrillar dots that contacted microtubules. A majority of these dots did not colocalize with internalized transferrin, indicating that the recycling and the lysosome-directed pathways were distinct. In conclusion, the I band areas were active in endocytosis along the whole length of the multinucleated myofibers. The sorting endosomes distributed in a cross-striated fashion while the recycling and late endosomal compartments showed perinuclear and interfibrillar localizations and followed the course of microtubules. (C) 1999 Academic Press

    Antagonistic Effects of Cellular Poly(C) Binding Proteins on Vesicular Stomatitis Virus Gene Expression â–¿

    Get PDF
    Immunoprecipitation and subsequent mass spectrometry analysis of the cellular proteins from cells expressing the vesicular stomatitis virus (VSV) P protein identified the poly(C) binding protein 2 (PCBP2) as one of the P protein-interacting proteins. To investigate the role of PCBP2 in the viral life cycle, we examined the effects of depletion or overexpression of this protein on VSV growth. Small interfering RNA-mediated silencing of PCBP2 promoted VSV replication. Conversely, overexpression of PCBP2 in transfected cells suppressed VSV growth. Further studies revealed that PCBP2 negatively regulates overall viral mRNA accumulation and subsequent genome replication. Coimmunoprecipitation and immunofluorescence microscopic studies showed that PCBP2 interacts and colocalizes with VSV P protein in virus-infected cells. The P-PCBP2 interaction did not result in reduced levels of protein complex formation with the viral N and L proteins, nor did it induce degradation of the P protein. In addition, PCBP1, another member of the poly(C) binding protein family with homology to PCBP2, was also found to interact with the P protein and inhibit the viral mRNA synthesis at the level of primary transcription without affecting secondary transcription or genome replication. The inhibitory effects of PCBP1 on VSV replication were less pronounced than those of PCBP2. Overall, the results presented here suggest that cellular PCBP2 and PCBP1 antagonize VSV growth by affecting viral gene expression and highlight the importance of these two cellular proteins in restricting virus infections
    corecore