65 research outputs found

    Uncovering hidden biodiversity in the Cryptophyta: New picoplanktonic clades from clone library studies at the Helgoland time series site in the southern German Bight.

    Get PDF
    Cryptophyceae are important group in marine phytoplankton, but little is known about the occurrence and distribution of individual species. Recently, with use of molecular probes and microarray technology, it has been shown that species related to Teleaulax spp. or Chroomonas spp. (clades 4 and 6) contributed most to cryptophyceam biomass in the North Sea. The probe for clades 4 and 6 cannot separate them and the single probe recognises members of both clades. Here, we increase the genetic diversity of our investigations of cryptophycean diversity in the North Sea by sequencing 18S rRNA clone libraries made from fractionated water samples to examine specifically the picoplanktonic fraction and to determine whether clade 4 or 6 were the dominant cyrptophytes. We focused on samples from the spring phytoplankton bloom in 2004 because the microarray signals were the strongest at this time. Excluding chimeric sequences, we detected nine cryptophycean OTUs, seven of which fell into the Teleaulax/ Plagioselmis branch, whereas two grouped with Geminigera spp. Our results indicate that these OTUs, affiliated with clade 4, may be an important component of cryptophyte community during spring bloom in the North Sea

    Uncovering hidden biodiversity in the Cryptophyta: Clone library studies at the Helgoland Time Series Site in the Southern German Bight indentifies the cryptophycean clade potentially responsible for the majority of its genetic diversity during the spring bloom.

    Get PDF
    Cryptophyceae are important group in marine phytoplankton, but little is known about the occurrence and distribution of individual species. Recently, with use of molecular probes and microarray technology, it has been shown that species related to teleaulax spp. or Chroomonas spp. (clades 4 or 6) contributed the most to cryptophycean biomass in the north Sea. for the microarray study, the single probe (clade 4/6) recognizes members of both clades 4 and 6 and thus cannot separate them. Therefore, it was unknown as to whether the cryptophyte community was composed of clade 4, clade 6 or both of them. Here, we addressed this question and increased the genetic diversity of our investigations of cryptophycean diversity in the north Sea by sequencing 18S rRnA clone libraries made from fractionated water samples to examine specifically the picoplanktonic fraction because that fraction was studied in detail in the earlier microarray study. We focused on samples from the spring phytoplankton bloom in 2004 because the microarray signals were the strongest at this time. Excluding chimeric sequences, we detect- ed nine cryptophycean oTUs, seven of which fell into the teleaulax/Plagioselmis branch, whereas two grouped with Geminigera spp. our results indicate that these oTUs, affiliated with clade 4, may be an important component of cryptophyte community during spring bloom in the north Se

    Plankton Ecology

    Get PDF

    DNA Microarrays for Identifying Fishes

    Get PDF
    In many cases marine organisms and especially their diverse developmental stages are difficult to identify by morphological characters. DNA-based identification methods offer an analytically powerful addition or even an alternative. In this study, a DNA microarray has been developed to be able to investigate its potential as a tool for the identification of fish species from European seas based on mitochondrial 16S rDNA sequences. Eleven commercially important fish species were selected for a first prototype. Oligonucleotide probes were designed based on the 16S rDNA sequences obtained from 230 individuals of 27 fish species. In addition, more than 1200 sequences of 380 species served as sequence background against which the specificity of the probes was tested in silico. Single target hybridisations with Cy5-labelled, PCR-amplified 16S rDNA fragments from each of the 11 species on microarrays containing the complete set of probes confirmed their suitability. True-positive, fluorescence signals obtained were at least one order of magnitude stronger than false-positive cross-hybridisations. Single nontarget hybridisations resulted in cross-hybridisation signals at approximately 27% of the cases tested, but all of them were at least one order of magnitude lower than true-positive signals. This study demonstrates that the 16S rDNA gene is suitable for designing oligonucleotide probes, which can be used to differentiate 11 fish species. These data are a solid basis for the second step to create a “Fish Chip” for approximately 50 fish species relevant in marine environmental and fisheries research, as well as control of fisheries products

    3 year report on activities for the Working Group on Phytoplankton and Microbial Ecology (WGPME)

    Get PDF
    The ICES Working Group on Phytoplankton and Microbial Ecology (WGPME) provides tools and expert perspectives on the sampling methods, ecology and diversity of phytoplankton and other planktonic microbes. The group set out terms of reference to improve access to data, crossdisciplinary approaches and to develop ecological interpretations of the changing phytoplankton seascape. The group published 16 papers between 2019–2021, including key tools, high-profile synthesis papers and science reports. Tools: The group has progressed efforts to collect images of commonly used Lugol’s-preserved phytoplankton, alongside live images to aid those in correctly identifying species. Members have noticed and published records of new phytoplankton species. The group aims to produce a New Records database to assist in notifying new or reoccurrence of a species. WGPME work, with other Expert Groups (EG) to improve access to molecular genetic tools and records. A multi-EG thematic session has been submitted for ICES ASC 2022 in cooperation with other EGs, whilst phytoplankton barcoding information will be incorporated into the Working Group on Integrated Morphological and Molecular Taxonomy (WGIMT) barcoding Atlas (https://metazoogene.org/atlas). Information and access: The group is gathering information on nano and picoplankton (small phytoplankton less than 10 and 2µm respectively) to incorporate into global datasets such as GLOMICON. Multiple data sources point to an increasing trend in picoplankton and few indicators exist in current EU or national legislation to measure their impact on marine ecology. Many members are involved in indicator development for governmental and pan-governmental organisations such as OSPAR. However, the number and level of indicators vary in each country. Long-term ecology: The cooperative zooplankton and phytoplankton report has been delayed but initial analysis has indicated ≥30 years of data reliably shows spatio-temporal trends in phytoplankton and the effects of temperature on key phytoplankton groups. Two research papers are being produced on climate change effects on key marine phytoplankton species with the additional aim of improving indicators of change using species-specific information

    Multiomics in the central Arctic Ocean for benchmarking biodiversity change

    Get PDF
    Multiomics approaches need to be applied in the central Arctic Ocean to benchmark biodiversity change and to identify novel species and their genes. As part of MOSAiC, EcoOmics will therefore be essential for conservation and sustainable bioprospecting in one of the least explored ecosystems on Earth

    Phytoplankton responses to marine climate change – an introduction

    Get PDF
    Phytoplankton are one of the key players in the ocean and contribute approximately 50% to global primary production. They serve as the basis for marine food webs, drive chemical composition of the global atmosphere and thereby climate. Seasonal environmental changes and nutrient availability naturally influence phytoplankton species composition. Since the industrial era, anthropogenic climatic influences have increased noticeably – also within the ocean. Our changing climate, however, affects the composition of phytoplankton species composition on a long-term basis and requires the organisms to adapt to this changing environment, influencing micronutrient bioavailability and other biogeochemical parameters. At the same time, phytoplankton themselves can influence the climate with their responses to environmental changes. Due to its key role, phytoplankton has been of interest in marine sciences for quite some time and there are several methodical approaches implemented in oceanographic sciences. There are ongoing attempts to improve predictions and to close gaps in the understanding of this sensitive ecological system and its responses

    Feasibility of Transferring Fluorescent In Situ Hybridization Probes to an 18S rRNA Gene Phylochip and Mapping of Signal Intensitiesâ–ż

    Get PDF
    DNA microarray technology offers the possibility to analyze microbial communities without cultivation, thus benefiting biodiversity studies. We developed a DNA phylochip to assess phytoplankton diversity and transferred 18S rRNA probes from dot blot or fluorescent in situ hybridization (FISH) analyses to a microarray format. Similar studies with 16S rRNA probes have been done determined that in order to achieve a signal on the microarray, the 16S rRNA molecule had to be fragmented, or PCR amplicons had to be <150 bp in length to minimize the formation of a secondary structure in the molecule so that the probe could bind to the target site. We found different results with the 18S rRNA molecule. Four out of 12 FISH probes exhibited false-negative signals on the microarray; eight exhibited strong but variable signals using full-length 18S RNA molecules. A systematic investigation of the probe's accessibility to the 18S rRNA gene was made using Prymenisum parvum as the target. Fourteen additional probes identical to this target covered the regions not tested with existing FISH probes. Probes with a binding site in the first 900 bp of the gene generated positive signals. Six out of nine probes binding in the last 900 bp of the gene produced no signal. Our results suggest that although secondary structure affected probe binding, the effect is not the same for the 18S rRNA gene and the 16S rRNA gene. For the 16S rRNA gene, the secondary structure is stronger in the first half of the molecule, whereas in the 18S rRNA gene, the last half of the molecule is critical. Probe-binding sites within 18S rRNA gene molecules are important for the probe design for DNA phylochips because signal intensity appears to be correlated with the secondary structure at the binding site in this molecule. If probes are designed from the first half of the 18S rRNA molecule, then full-length 18S rRNA molecules can be used in the hybridization on the chip, avoiding the fragmentation and the necessity for the short PCR amplicons that are associated with using the 16S rRNA molecule. Thus, the 18S rRNA molecule is a more attractive molecule for use in environmental studies where some level of quantification is desired. Target size was a minor problem, whereas for 16S rRNA molecules target size rather than probe site was important
    • …
    corecore