677 research outputs found

    High Energy Gamma-Ray Emission From Blazars: EGRET Observations

    Get PDF
    We will present a summary of the observations of blazars by the Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (CGRO). EGRET has detected high energy gamma-ray emission at energies greater than 100 MeV from more that 50 blazars. These sources show inferred isotropic luminosities as large as 3×10493\times 10^{49} ergs s−1^{-1}. One of the most remarkable characteristics of the EGRET observations is that the gamma-ray luminosity often dominates the bolometric power of the blazar. A few of the blazars are seen to exhibit variability on very short time-scales of one day or less. The combination of high luminosities and time variations seen in the gamma-ray data indicate that gamma-rays are an important component of the relativistic jet thought to characterize blazars. Currently most models for blazars involve a beaming scenario. In leptonic models, where electrons are the primary accelerated particles, gamma-ray emission is believed to be due to inverse Compton scattering of low energy photons, although opinions differ as to the source of the soft photons. Hardronic models involve secondary production or photomeson production followed by pair cascades, and predict associated neutrino production.Comment: 16 pages, 7 figures, style files included. Invited review paper in "Observational Evidence for Black Holes in the Universe," 1999, ed. S. K. Chakrabarti (Dordrecht: Kluwer), 215-23

    Design Rules for Self-Assembly of 2D Nanocrystal/Metal-Organic Framework Superstructures.

    Get PDF
    We demonstrate the guiding principles behind simple two dimensional self-assembly of MOF nanoparticles (NPs) and oleic acid capped iron oxide (Fe3 O4 ) NCs into a uniform two-dimensional bi-layered superstructure. This self-assembly process can be controlled by the energy of ligand-ligand interactions between surface ligands on Fe3 O4 NCs and Zr6 O4 (OH)4 (fumarate)6 MOF NPs. Scanning transmission electron microscopy (TEM)/energy-dispersive X-ray spectroscopy and TEM tomography confirm the hierarchical co-assembly of Fe3 O4 NCs with MOF NPs as ligand energies are manipulated to promote facile diffusion of the smaller NCs. First-principles calculations and event-driven molecular dynamics simulations indicate that the observed patterns are dictated by combination of ligand-surface and ligand-ligand interactions. This study opens a new avenue for design and self-assembly of MOFs and NCs into high surface area assemblies, mimicking the structure of supported catalyst architectures, and provides a thorough fundamental understanding of the self-assembly process, which could be a guide for designing functional materials with desired structure

    Autoimmunity in Immunodeficiency

    Get PDF
    Primary immunodeficiencies (PID) comprise a diverse group of clinical disorders with varied genetic defects. Paradoxically, a substantial proportion of PID patients develop autoimmune phenomena in addition to having increased susceptibility to infections from their impaired immunity. Although much of our understanding comes from data gathered through experimental models, there are several well-characterized PID that have improved our knowledge of the pathways that drive autoimmunity. The goals of this review will be to discuss these immunodeficiencies and to review the literature with respect to the proposed mechanisms for autoimmunity within each put forth to date

    Evidence for a Binary Companion to the Central Compact Object 1E 1207.4-5209

    Get PDF
    Unique among neutron stars, 1E 1207.4-5209 is an X-ray pulsar with a spin period of 424 ms that contains at least two strong absorption features in its energy spectrum. This neutron star has been identified as a member of the radio-quiet compact central objects in supernova remnants. It has been found that 1E 1207.4-5209 is not spinning down monotonically suggesting that this neutron star undergoes strong, frequent glitches, contains a fall-back disk, or possess a binary companion. Here, we report on a sequence of seven XMM-Newton observations of 1E 1207.4-5209 performed during a 40 day window in June/July 2005. Due to unanticipated variance in the phase measurements beyond the statistical uncertainties, we could not identify a unique phase-coherent timing solution. The three most probable timing solutions give frequency time derivatives of +0.9, -2.6, and +1.6 X 10^(-12) Hz/s (listed in descending order of significance). We conclude that the local frequency derivative during our XMM-Newton observing campaign differs from the long-term spin-down rate by more than an order of magnitude, effectively ruling out glitch models for 1E 1207.4-5209. If the long-term spin frequency variations are caused by timing noise, the strength of the timing noise in 1E 1207.4-5209 is much stronger than in other pulsars with similar period derivatives. Therefore, it is highly unlikely that the spin variations are caused by the same physical process that causes timing noise in other isolated pulsars. The most plausible scenario for the observed spin irregularities is the presence of a binary companion to 1E 1207.4-5209. We identified a family of orbital solutions that are consistent with our phase-connected timing solution, archival frequency measurements, and constraints on the companions mass imposed by deep IR and optical observations.Comment: 8 pages, 4 figures. To be published in the proceedings of "Isolated Neutron Stars: from the Interior to the Surface" (April 24-28, 2006) - eds. D. Page, R. Turolla & S. Zan

    PSRs J0248+6021 and J2240+5832: Young Pulsars in the Northern Galactic Plane. Discovery, Timing, and Gamma-ray observations

    Get PDF
    Pulsars PSR J0248+6021 (rotation period P=217 ms and spin-down power Edot = 2.13E35 erg/s) and PSR J2240+5832 (P=140 ms, Edot = 2.12E35 erg/s) were discovered in 1997 with the Nancay radio telescope during a northern Galactic plane survey, using the Navy-Berkeley Pulsar Processor (NBPP) filter bank. GeV gamma-ray pulsations from both were discovered using the Fermi Large Area Telescope. Twelve years of radio and polarization data allow detailed investigations. The two pulsars resemble each other both in radio and in gamma-ray data. Both are rare in having a single gamma-ray pulse offset far from the radio peak. The high dispersion measure for PSR J0248+6021 (DM = 370 pc cm^-3) is most likely due to its being within the dense, giant HII region W5 in the Perseus arm at a distance of 2 kpc, not beyond the edge of the Galaxy as obtained from models of average electron distributions. Its high transverse velocity and the low magnetic field along the line-of-sight favor this small distance. Neither gamma-ray, X-ray, nor optical data yield evidence for a pulsar wind nebula surrounding PSR J0248+6021. The gamma-ray luminosity for PSR J0248+6021 is L_ gamma = (1.4 \pm 0.3)\times 10^34 erg/s. For PSR J2240+5832, we find either L_gamma = (7.9 \pm 5.2) \times 10^34 erg/s if the pulsar is in the Outer arm, or L_gamma = (2.2 \pm 1.7) \times 10^34 erg/s for the Perseus arm. These luminosities are consistent with an L_gamma ~ sqrt(Edot) rule. Comparison of the gamma-ray pulse profiles with model predictions, including the constraints obtained from radio polarization data, favor emission in the far magnetosphere. These two pulsars differ mainly in their inclination angles and acceleration gap widths, which in turn explains the observed differences in the gamma-ray peak widths.Comment: 13 pages, Accepted to Astronomy & Astrophysic

    High-frequency radio properties of sources in the Fermi-LAT 1-year Point Source Catalogue

    Full text link
    The high-frequency radio sky, like the gamma-ray sky surveyed by the Fermi satellite, is dominated by flat spectrum radio quasars and BL Lac objects at bright flux levels. To investigate the relationship between radio and gamma-ray emission in extragalactic sources, we have cross-matched the Australia Telescope 20 GHz survey catalog (AT20G) with the Fermi-LAT 1 year Point Source Catalog (1FGL). The 6.0 sr of sky covered by both catalogs ({\delta} < 0\circ, |b| > 1.\circ 5) contains 5890 AT20G radio sources and 604 1FGL gamma-ray sources. The AT20G source positions are accurate to within ~1 arcsec and, after excluding known Galactic sources, 43% of Fermi 1FGL sources have an AT20G source within the 95% Fermi confidence ellipse. Monte Carlo tests imply that at least 95% of these matches are genuine associations. Only five gamma-ray sources (1% of the Fermi catalog) have more than one AT20G counterpart in the Fermi error box. The AT20G matches also generally support the active galactic nucleus (AGN) associations in the First LAT AGN Catalog. We find a trend of increasing gamma-ray flux density with 20 GHz radio flux density. The Fermi detection rate of AT20G sources is close to 100% for the brightest 20 GHz sources, decreasing to 20% at 1 Jy, and to roughly 1% at 100 mJy. Eight of the matched AT20G sources have no association listed in 1FGL and are presented here as potential gamma-ray AGNs for the first time.We also identify an alternative AGN counterpart to one 1FGL source. The percentage of Fermi sources with AT20G detections decreases toward the Galactic plane, suggesting that the 1FGL catalog contains at least 50 Galactic gamma-ray sources in the southern hemisphere that are yet to be identified.Comment: Replaced to match version published in Ap

    Growth of CuCl thin films by magnetron sputtering for ultraviolet optoelectronic applications

    Get PDF
    Copper (I) chloride (CuCl) is a potential candidate for ultraviolet (UV) optoelectronics due to its close lattice match with Si (mismatch less than 0.4%) and a high UV excitonic emission at room temperature. CuCl thin films were deposited using radio frequency magnetron sputtering technique. The influence of target to substrate distance (dts) and sputtering pressure on the composition, microstructure, and UV emission properties of the films were analyzed. The films deposited with shorter target to substrate spacing (dts=3 cm) were found to be nonstoichiometric, and the film stoichiometry improves when the substrate is moved away from the target (dts=4.5 and 6 cm). A further increase in the spacing results in poor crystalline quality. The grain interface area increases when the sputtering pressure is increased from 1.1×10–³ to 1×10–ÂČ mbar at dts=6 cm. Room temperature cathodoluminescence spectrum shows an intense and sharp UV exciton (Z₃) emission at ~385 nm with a full width at half maximum of 16 nm for the films deposited at the optimum dts of 6 cm and a pressure of 1.1×10–³ mbar. A broad deep level emission in the green region (~515 nm) is also observed. The relative intensity of the UV to green emission peaks decreased when the sputtering pressure was increased, consistent with an increase in grain boundary area. The variation in the stoichiometry and the crystallinity are attributed to the change in the intensity and energy of the flux of materials from the target due to the interaction with the background gas molecules

    Optical and radio variability of the BL Lac object AO 0235+16: a possible 5-6 year periodicity

    Full text link
    New optical and radio data on the BL Lacertae object AO 0235+16 have been collected in the last four years by a wide international collaboration, which confirm the intense activity of this source. The optical data also include the results of the Whole Earth Blazar Telescope (WEBT) first-light campaign organized in November 1997. The optical spectrum is observed to basically steepen when the source gets fainter. We have investigated the existence of typical variability time scales and of possible correlations between the optical and radio emissions by means of visual inspection, Discrete Correlation Function analysis, and Discrete Fourier Transform technique. The major radio outbursts are found to repeat quasi-regularly with a periodicity of about 5.7 years; this period is also in agreement with the occurrence of some of the major optical outbursts, but not all of them.Comment: to be published in A&

    Gamma-ray follow-up studies on Eta Carinae

    Full text link
    Observations of high energy gamma rays recently revealed a persistent source in spatial coincidence with the binary system Eta Carinae. Since modulation of the observed gamma-ray flux on orbital time scales has not been reported so far, an unambiguous identification was hitherto not possible. Particularly the observations made by the Fermi Large Area Telescope (LAT) posed additional questions regarding the actual emission scenario owing to the existence of two energetically distinct components in the gamma-ray spectrum of this source, best described by an exponentially cutoff power-law function (CPL) at energies below 10 GeV and a power-law (PL) component dominant at higher energies. The increased exposure in conjunction with the improved instrumental response functions of the LAT now allow us to perform a more detailed investigation of location, spectral shape, and flux time history of the observed gamma-ray emission. For the first time, we are able to report a weak but regular flux decrease over time. This can be understood and interpreted in a colliding-wind binary scenario for orbital modulation of the gamma-ray emission. We find the spectral shape of the gamma-ray signal in agreement with a single emitting particle population in combination with significant absorption by gamma-gamma pair production. Studying the correlation of the flux decrease with the orbital separation of the binary components allows us to predict the behaviour up to the next periastron passage in 2014.Comment: 11 pages, 9 figure

    Assembly and photocarrier dynamics of heterostructured nanocomposite photoanodes from multicomponent colloidal nanocrystals

    Get PDF
    Multicomponent oxides and their heterostructures are rapidly emerging as promising light absorbers to drive oxidative chem. To fully exploit their functionality, precise tuning of their compn. and structure is crucial. Here, we report a novel soln.-based route to nanostructured bismuth vanadate (BiVO4) that facilitates the assembly of BiVO4/metal oxide (TiO2, WO3, and Al2O3) nanocomposites in which the morphol. of the metal oxide building blocks is finely tailored. The combination of transient absorption spectroscopy-spanning from picoseconds to second time scales-and photoelectrochem. measurements reveals that the achieved structural tunability is key to understanding and directing charge sepn., transport, and efficiency in these complex oxide heterostructured films
    • 

    corecore