1,355 research outputs found

    Energy-Dependent Harmonic Ratios of the Cyclotron Features of X0331+53 in the 2004-2005 Outburst

    Full text link
    We report on changes of the cyclotron resonance energies of the recurrent transient pulsar, X0331+53 (V0332+53). The whole RXTE data acquired in the 2004-2005 outburst were utilized. The 3-80 keV source luminosity varied between 1.7x10^36 and 3.5x10^38 ers/s, assuming a distance of 7 kpc. We confirmed that the fundamental cyclotron resonance energy changed from ~22 to ~27 keV in a clear anti-correlation to the source luminosity, and without any hysteresis effects between the rising and declining phases of the outburst. In contrast, the second harmonic energy changed from ~49 to ~54 keV, implying a weaker fractional change as a function of the luminosity. As a result, the observed resonance energy ratio between the second harmonic and the fundamental was ~2.2 when the source was most luminous, whereas the ratio decreased to the nominal value of 2.0 at the least luminous state. Although the significance of this effect is model dependent, these results suggest that the fundamental and second harmonic resonances represent different heights in the accretion column, depending on the mass accretion rate.Comment: 39 pages, 15 figures, 4 tables. Accepted for publication in Astrophysical Journa

    The Declined Activity in the Nucleus of NGC 1316

    Get PDF
    NGC 1316 (Fornax A) is a radio galaxy with prototypical double lobes, where the magnetic field intensity is accurately measured via the inverse-Compton technique. The radio-emitting electrons in the lobes are inferred to have a synchrotron life time of 0.1 Gyr. Considering the lobe energetics, we estimate the past nuclear X-ray luminosity of NGC 1316 to be at least 4 times 10^{34} W (4 times 10^{41} erg s^{-1}). Thus, the nucleus was rather active at least 0.1 Gyr ago. In contrast, we confirmed with ASCA and ROSAT that the nucleus of NGC 1316 is very faint in X-rays at present, with the 2--10 keV luminosity of any AGN-like hard component being < 2 times 10^{33} W (2 times 10^{40} erg s^{-1}) even assuming a nuclear obscuration up to 10^{28} m^{-2} (10^{24} cm^{-2}). This is at least an order of magnitude lower than the estimated past activity, indicating that the nucleus is presently very inactive. From these two results, we conclude that the nucleus of NGC 1316 has become dormant during the last 0.1 Gyr. This suggests the possible abundance of ``dormant'' quasars in nearby galaxies.Comment: 7 pages, 2 figures, to be published in the Astrophysical Journal Letter

    Excess Hard X-ray Emission from the Obscured Low Luminosity AGN In the Nearby Galaxy M 51 (NGC 5194)

    Get PDF
    We observed the nearby galaxy M~51 (NGC 5194) with BeppoSAX. The X-ray properties of the nucleus below 10 keV are almost the same as the ASCA results regarding the hard component and the neutral Fe Kα\alpha line, but the intensity is about half of the ASCA 1993 data. Beyond this, in the BeppoSAX PDS data, we detected a bright hard X-ray emission component which dominates above 10 keV. The 10 -- 100 keV flux and luminosity of this component are respectively 2×10112\times10^{-11} erg s1^{-1} cm2^{-2} and 2×10412\times10^{41} erg s1^{-1}. These are about 10 times higher than the extrapolation from the soft X-ray band, and similar to the flux observed with Ginga, which found a bright power law component in 2 -- 20 keV band. Considering other wavelength properties and the X-ray luminosity, together with strong neutral Fe K line, the hard X-ray emission most likely arises from a low luminosity active nucleus, which is obscured with a column density of 1024\sim10^{24}cm2^{-2}. This suggests that hidden low luminosity AGNs may well be present in other nearby galaxies. We interpret the discrepancy between Ginga and other X-ray satellites to be due to a large variability of absorption column density toward the line of sight over several years, suggesting that the Compton thick absorption material may be present on a spatial scale of a parsec. Apart from the nucleus, several ultra-luminous off-nuclear X-ray sources detected in M~51 exhibit long-term time variability, suggesting the state transition similar to that observed in Galactic black hole candidates.Comment: 18 pages, 8 figures, accepted for A&

    Strong Turbulence in the Cool Cores of Galaxy Clusters: Can Tsunamis Solve the Cooling Flow Problem?

    Full text link
    Based on high-resolution two-dimensional hydrodynamic simulations, we show that the bulk gas motions in a cluster of galaxies, which are naturally expected during the process of hierarchical structure formation of the universe, have a serous impact on the core. We found that the bulk gas motions represented by acoustic-gravity waves create local but strong turbulence, which reproduces the complicated X-ray structures recently observed in cluster cores. Moreover, if the wave amplitude is large enough, they can suppress the radiative cooling of the cores. Contrary to the previous studies, the heating is operated by the turbulence, not weak shocks. The turbulence could be detected in near-future space X-ray missions such as ASTRO-E2.Comment: Movies are available at http://th.nao.ac.jp/tsunami/index.ht

    A Simple Measurement of Turbulence in Cores of Galaxy Clusters

    Full text link
    Using a simple model, we study the effects of turbulence on the motion of bubbles produced by AGN jet activities in the core of a galaxy cluster. We focus on the turbulence with scales larger then the size of the bubbles. We show that for a bubble pair with an age of ~10^8 yr, the projected angle between the two vectors from the cluster center to the two bubbles should be ~> 90 degree and the ratio of their projected distances from the cluster center should be ~< 2.5, if the velocity and scale of the turbulence are ~250 km s^-1 and ~20 kpc, respectively. The positions of the bubbles observed in the Perseus cluster suggest that the turbulent velocity is ~>100 km s^-1 for the cluster.Comment: Accepted for publication in ApJ

    Probing the stellar wind environment of Vela X-1 with MAXI

    Full text link
    Vela X-1 is among the best studied and most luminous accreting X-ray pulsars. The supergiant optical companion produces a strong radiatively-driven stellar wind, which is accreted onto the neutron star producing highly variable X-ray emission. A complex phenomenology, due to both gravitational and radiative effects, needs to be taken into account in order to reproduce orbital spectral variations. We have investigated the spectral and light curve properties of the X-ray emission from Vela X-1 along the binary orbit. These studies allow to constrain the stellar wind properties and its perturbations induced by the compact object. We took advantage of the All Sky Monitor MAXI/GSC data to analyze Vela X-1 spectra and light curves. By studying the orbital profiles in the 4104-10 and 102010-20 keV energy bands, we extracted a sample of orbital light curves (15{\sim}15% of the total) showing a dip around the inferior conjunction, i.e., a double-peaked shape. We analyzed orbital phase-averaged and phase-resolved spectra of both the double-peaked and the standard sample. The dip in the double-peaked sample needs NH2×1024N_H\sim2\times10^{24}\,cm2^{-2} to be explained by absorption solely, which is not observed in our analysis. We show how Thomson scattering from an extended and ionized accretion wake can contribute to the observed dip. Fitted by a cutoff power-law model, the two analyzed samples show orbital modulation of the photon index, hardening by 0.3{\sim}0.3 around the inferior conjunction, compared to earlier and later phases, hinting a likely inadequacy of this model. On the contrary, including a partial covering component at certain orbital phase bins allows a constant photon index along the orbital phases, indicating a highly inhomogeneous environment. We discuss our results in the framework of possible scenarios.Comment: 10 pages, 9 figures, accepted for publication in A&

    ASCA PV observations of the Seyfert 2 galaxy NGC 4388: the obscured nucleus and its X-ray emission

    Get PDF
    We present results on the Seyfert 2 galaxy NGC4388 in the Virgo cluster observed with ASCA during its PV phase. The 0.5-10 keV X-ray spectrum consists of multiple components; (1) a continuum component heavily absorbed by a column density NH = 4E23 cm-2 above 3 keV; (2) a strong 6.4 keV line (EW = 500 eV); (3) a weak flat continuum between 1 and 3 keV; and (4) excess soft X-ray emission below 1 keV. The detection of strong absorption for the hard X-ray component is firm evidence for an obscured active nucleus in this Seyfert 2 galaxy. The absorption corrected X-ray luminosity is about 2E42 erg/s. This is the first time that the fluorescent iron-K line has been detected in this object. The flat spectrum in the intermediate energy range may be a scattered continuum from the central source. The soft X-ray emission below 1 keV can be thermal emission from a temperature kT = 0.5 keV, consistent with the spatially extended emission observed by ROSAT HRI. However, the low abundance (0.05 Zs) and high mass flow rate required for the thermal model and an iron-K line stronger than expected from the obscuring torus model are puzzling. An alternative consistent solution can be obtained if the central source was a hundred times more luminous over than a thousand years ago. All the X-ray emission below 3 keV is then scattered radiation.Comment: 9 pages, 5 Postscript figures, to be published in MNRA

    Chandra Observation of M84, Radio Lobe Elliptical in Virgo cluster

    Full text link
    We analyzed a deep Chandra observation of M84, a bright elliptical galaxy in the core of the Virgo cluster. We find that the spatial distribution of the soft X-ray emission is defined by the radio structure of the galaxy. In particular we find two low density regions associated with the radio lobes and surrounded by higher density X-ray filaments. In addition to a central AGN and a population of galactic sources, we find a diffuse hard source filling the central 10 kpc region. Since the morphology of the hard source appears round and is different from that seen in the radio or in soft X-rays, we propose that it is hot gas heated by the central AGN. Finally, we find that the central elemental abundance in the X-ray gas is comparable to that measured optically.Comment: accepted to ApJ Letters, Oct 2000. 5 pages in emulateap
    corecore