148 research outputs found

    Учебная история болезни по внутренним болезням и военно-полевой терапии

    Get PDF
    ВНУТРЕННИЕ БОЛЕЗНИВОЕННО-ПОЛЕВАЯ ТЕРАПИЯИСТОРИЯ БОЛЕЗНИМЕТОДИЧЕСКИЕ УКАЗАНИЯМетодические указания учат студентов правильно оформлять историю болезни пациента

    Genome-wide profiling of G protein-coupled receptors in cerebellar granule neurons using high-throughput, real-time PCR

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>G protein-coupled receptors (GPCRs) are major players in cell communication, regulate a whole range of physiological functions during development and throughout adult life, are affected in numerous pathological situations, and constitute so far the largest class of drugable targets for human diseases. The corresponding genes are usually expressed at low levels, making accurate, genome-wide quantification of their expression levels a challenging task using microarrays.</p> <p>Results</p> <p>We first draw an inventory of all endo-GPCRs encoded in the murine genome. To profile GPCRs genome-wide accurately, sensitively, comprehensively, and cost-effectively, we designed and validated a collection of primers that we used in quantitative RT-PCR experiments. We experimentally validated a statistical approach to analyze genome-wide, real-time PCR data. To illustrate the usefulness of this approach, we determined the repertoire of GPCRs expressed in cerebellar granule neurons and neuroblasts during postnatal development.</p> <p>Conclusions</p> <p>We identified tens of GPCRs that were not detected previously in this cell type; these GPCRs represent novel candidate players in the development and survival of cerebellar granule neurons. The sequences of primers used in this study are freely available to those interested in quantifying GPCR expression comprehensively.</p

    Impedance Responses Reveal β2-Adrenergic Receptor Signaling Pluridimensionality and Allow Classification of Ligands with Distinct Signaling Profiles

    Get PDF
    The discovery that drugs targeting a single G protein-coupled receptor (GPCR) can differentially modulate distinct subsets of the receptor signaling repertoire has created a challenge for drug discovery at these important therapeutic targets. Here, we demonstrate that a single label-free assay based on cellular impedance provides a real-time integration of multiple signaling events engaged upon GPCR activation. Stimulation of the β2-adrenergic receptor (β2AR) in living cells with the prototypical agonist isoproterenol generated a complex, multi-featured impedance response over time. Selective pharmacological inhibition of specific arms of the β2AR signaling network revealed the differential contribution of Gs-, Gi- and Gβγ-dependent signaling events, including activation of the canonical cAMP and ERK1/2 pathways, to specific components of the impedance response. Further dissection revealed the essential role of intracellular Ca2+ in the impedance response and led to the discovery of a novel β2AR-promoted Ca2+ mobilization event. Recognizing that impedance responses provide an integrative assessment of ligand activity, we screened a collection of β-adrenergic ligands to determine if differences in the signaling repertoire engaged by compounds would lead to distinct impedance signatures. An unsupervised clustering analysis of the impedance responses revealed the existence of 5 distinct compound classes, revealing a richer signaling texture than previously recognized for this receptor. Taken together, these data indicate that the pluridimensionality of GPCR signaling can be captured using integrative approaches to provide a comprehensive readout of drug activity

    Boreal forest floor greenhouse gas emissions across a Pleurozium schreberi-dominated, wildfire-disturbed chronosequence

    Get PDF
    The boreal forest is a globally critical biome for carbon cycling. Its forests are shaped by wildfire events that affect ecosystem properties and climate feedbacks including greenhouse gas (GHG) emissions. Improved understanding of boreal forest floor processes is needed to predict the impacts of anticipated increases in fire frequency, severity, and extent. In this study, we examined relationships between time since last wildfire (TSF), forest floor soil properties, and GHG emissions (CO2, CH4, N2O) along a Pleurozium schreberi-dominated chronosequence in mid- to late succession located in northern Sweden. Over three growing seasons in 2012–2014, GHG flux measurements were made in situ and samples were collected for laboratory analyses. We predicted that P. schreberi-covered forest floor GHG fluxes would be related to distinct trends in the soil properties and microbial community along the wildfire chronosequence. Although we found no overall effect of TSF on GHG emissions, there was evidence that soil C/N, one of the few properties to show a trend with time, was inversely linked to ecosystem respiration. We also found that local microclimatic conditions and site-dependent properties were better predictors of GHG fluxes than TSF. This shows that site-dependent co-variables (that is, forest floor climate and plant-soil properties) need to be considered as well as TSF to predict GHG emissions as wildfires become more frequent, extensive and severe

    The Adhesion GPCR GPR125 is specifically expressed in the choroid plexus and is upregulated following brain injury

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>GPR125 belongs to the family of <it>Adhesion </it>G protein-coupled receptors (GPCRs). A single copy of GPR125 was found in many vertebrate genomes. We also identified a <it>Drosophila </it>sequence, DmCG15744, which shares a common ancestor with the entire Group III of <it>Adhesio</it>n GPCRs, and also contains Ig, LRR and HBD domains which were observed in mammalian GPR125.</p> <p>Results</p> <p>We found specific expression of GPR125 in cells of the choroid plexus using <it>in situ </it>hybridization and protein-specific antibodies and combined <it>in situ</it>/immunohistochemistry co-localization using cytokeratin, a marker specific for epithelial cells. Induction of inflammation by LPS did not change GPR125 expression. However, GPR125 expression was transiently increased (almost 2-fold) at 4 h after traumatic brain injury (TBI) followed by a decrease (approximately 4-fold) from 2 days onwards in the choroid plexus as well as increased expression (2-fold) in the hippocampus that was delayed until 1 day after injury.</p> <p>Conclusion</p> <p>These findings suggest that GPR125 plays a functional role in choroidal and hippocampal response to injury.</p

    Sick leave among home-care personnel: a longitudinal study of risk factors

    Get PDF
    BACKGROUND: Sick leave due to neck, shoulder and back disorders (NSBD) is higher among health-care workers, especially nursing aides/assistant nurses, compared with employees in other occupations. More information is needed about predictors of sick leave among health care workers. The aim of the study was to assess whether self-reported factors related to health, work and leisure time could predict: 1) future certified sick leave due to any cause, in nursing aides/assistant nurses (Study group I) and 2) future self-reported sick leave due to NSBD in nursing aides/assistant nurses (Study group II). METHODS: Study group I, comprised 443 female nursing aides/assistant nurses, not on sick leave at baseline when a questionnaire was completed. Data on certified sick leave were collected after 18 months. Study group II comprised 274 of the women, who at baseline reported no sick leave during the preceding year due to NSBD and who participated at the 18 month follow-up. Data on sick leave due to NSBD were collected from the questionnaire at 18 months. The associations between future sick leave and factors related to health, work and leisure time were tested by logistic regression analyses. RESULTS: Health-related factors such as previous low back disorders (OR: 1.89; 95% CI 1.20–2.97) and previous sick leave (OR 6.40; 95%CI 3.97–10.31), were associated with a higher risk of future sick leave due to any cause. Factors related to health, work and leisure time, i.e. previous low back disorders (OR: 4.45; 95% CI 1.27–15.77) previous sick leave, not due to NSBD (OR 3.30; 95%CI 1.33–8.17), high strain work (OR 2.34; 95%CI 1.05–5.23) and high perceived physical exertion in domestic work (OR 2.56; 95%CI 1.12–5.86) were associated with a higher risk of future sick leave due to NSBD. In the final analyses, previous low back disorders and previous sick leave remained significant in both study groups. CONCLUSION: The results suggest a focus on previous low back disorders and previous sick leave for the design of early prevention programmes aiming at reducing future sick leave due to any cause, as well as due to NSBD, among nursing aides/assistant nurses. A multifactorial approach may be of importance in the early prevention of sick leave due to NSBD

    DNA Display Selection of Peptide Ligands for a Full-Length Human G Protein-Coupled Receptor on CHO-K1 Cells

    Get PDF
    The G protein-coupled receptors (GPCRs), which form the largest group of transmembrane proteins involved in signal transduction, are major targets of currently available drugs. Thus, the search for cognate and surrogate peptide ligands for GPCRs is of both basic and therapeutic interest. Here we describe the application of an in vitro DNA display technology to screening libraries of peptide ligands for full-length GPCRs expressed on whole cells. We used human angiotensin II (Ang II) type-1 receptor (hAT1R) as a model GPCR. Under improved selection conditions using hAT1R-expressing Chinese hamster ovary (CHO)-K1 cells as bait, we confirmed that Ang II gene could be enriched more than 10,000-fold after four rounds of selection. Further, we successfully selected diverse Ang II-like peptides from randomized peptide libraries. The results provide more precise information on the sequence-function relationships of hAT1R ligands than can be obtained by conventional alanine-scanning mutagenesis. Completely in vitro DNA display can overcome the limitations of current display technologies and is expected to prove widely useful for screening diverse libraries of mutant peptide and protein ligands for receptors that can be expressed functionally on the surface of CHO-K1 cells

    Boreal forest soil carbon fluxes one year after a wildfire: Effects of burn severity and management

    Get PDF
    The extreme 2018 hot drought that affected central and northern Europe led to the worst wildfire season in Sweden in over a century. The Ljusdal fire complex, the largest area burnt that year (8995 ha), offered a rare opportunity to quantify the combined impacts of wildfire and post-fire management on Scandinavian boreal forests. We present chamber measurements of soil CO2 and CH4 fluxes, soil microclimate and nutrient content from five Pinus sylvestris sites for the first growing season after the fire. We analysed the effects of three factors on forest soils: burn severity, salvage-logging and stand age. None of these caused significant differences in soil CH4 uptake. Soil respiration, however, declined significantly after a high-severity fire (complete tree mortality) but not after a low-severity fire (no tree mortality), despite substantial losses of the organic layer. Tree root respiration is thus key in determining post-fire soil CO2 emissions and may benefit, along with heterotrophic respiration, from the nutrient pulse after a low-severity fire. Salvage-logging after a high-severity fire had no significant effects on soil carbon fluxes, microclimate or nutrient content compared with leaving the dead trees standing, although differences are expected to emerge in the long term. In contrast, the impact of stand age was substantial: a young burnt stand experienced more extreme microclimate, lower soil nutrient supply and significantly lower soil respiration than a mature burnt stand, due to a thinner organic layer and the decade-long effects of a previous clear-cut and soil scarification. Disturbance history and burn severity are, therefore, important factors for predicting changes in the boreal forest carbon sink after wildfires. The presented short-term effects and ongoing monitoring will provide essential information for sustainable management strategies in response to the increasing risk of wildfire

    Probenecid Inhibits the Human Bitter Taste Receptor TAS2R16 and Suppresses Bitter Perception of Salicin

    Get PDF
    Bitter taste stimuli are detected by a diverse family of G protein-coupled receptors (GPCRs) expressed in gustatory cells. Each bitter taste receptor (TAS2R) responds to an array of compounds, many of which are toxic and can be found in nature. For example, human TAS2R16 (hTAS2R16) responds to β-glucosides such as salicin, and hTAS2R38 responds to thiourea-containing molecules such as glucosinolates and phenylthiocarbamide (PTC). While many substances are known to activate TAS2Rs, only one inhibitor that specifically blocks bitter receptor activation has been described. Here, we describe a new inhibitor of bitter taste receptors, p-(dipropylsulfamoyl)benzoic acid (probenecid), that acts on a subset of TAS2Rs and inhibits through a novel, allosteric mechanism of action. Probenecid is an FDA-approved inhibitor of the Multidrug Resistance Protein 1 (MRP1) transporter and is clinically used to treat gout in humans. Probenecid is also commonly used to enhance cellular signals in GPCR calcium mobilization assays. We show that probenecid specifically inhibits the cellular response mediated by the bitter taste receptor hTAS2R16 and provide molecular and pharmacological evidence for direct interaction with this GPCR using a non-competitive (allosteric) mechanism. Through a comprehensive analysis of hTAS2R16 point mutants, we define amino acid residues involved in the probenecid interaction that result in decreased sensitivity to probenecid while maintaining normal responses to salicin. Probenecid inhibits hTAS2R16, hTAS2R38, and hTAS2R43, but does not inhibit the bitter receptor hTAS2R31 or non-TAS2R GPCRs. Additionally, structurally unrelated MRP1 inhibitors, such as indomethacin, fail to inhibit hTAS2R16 function. Finally, we demonstrate that the inhibitory activity of probenecid in cellular experiments translates to inhibition of bitter taste perception of salicin in humans. This work identifies probenecid as a pharmacological tool for understanding the cell biology of bitter taste and as a lead for the development of broad specificity bitter blockers to improve nutrition and medical compliance
    corecore