29,949 research outputs found

    Temperature sensitivity of Eppley broadband radiometers

    Get PDF
    Broadband radiometers manufactured by Eppley Laboratories Inc. are commonly used to measure irradiance from both ground-based and aircraft platforms. Namely, the pyranometer (Model PSP) measures irradiance in the .3 to 3.0 micron spectral region while the pyrgeometer (Model PIR) senses energy in the 4 to 50 micron region. The two instruments have a similar thermopile construction but different filters to achieve the appropriate spectral selection. During the fall of 1986, the First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment (FIRE) commenced with the first cirrus Intensive Field Observation (IFO) conducted in Central Wisconsin. Due to the nature of this field project, pyranometers and pyrgeometers manufactured by Eppley were flown on NCAR's high altitude research aircraft, the Sabreliner. Inherent in the construction of these radiometers is temperature compensation circuitry designed to make the instrument sensitivity nominally constant over a temperature range from -20 to +40 C. Because the Sabreliner flew at high altitudes where temperatures were as cold as -70 C, it was necessary to determine the radiometers relative sensitivity to temperatures below -20 C and apply appropriate corrections to the FIRE radiation data set. A procedure to perform this calibration is outlined. It is meant to serve as a supplement to calibration procedures

    Radiative properties of cirrus clouds inferred from broadband measurements during FIRE

    Get PDF
    It is well known that clouds are significant modulators of weather and climate because of their effects on the radiation field and thus on the energy balance of the earth atmosphere system. As a result, the accurate prediction of weather and climate depends to a significant degree on the accuracy with which cloud radiation interactions can be described. The broadband radiative and microphysical properties of five cirrus cloud systems are reported, as observed from the NCAR Sabreliner during the FIRE first Cirrus IFO, in order to better understand cirrus cloud-radiation interactions. A broadband infrared (BBIR) radiative transfer model is used to deduce BBIR absorption coefficients in order to assess the impact of the cirrus clouds on infrared radiation. The relationships of these absorption coefficients to temperature and microphysical characteristics are explored

    Rocket measurements of electron temperature in the E region

    Get PDF
    The rocket borne equipment, experimental method, and data reduction techniques used in the measurement of electron temperature in the E region are fully described. Electron temperature profiles from one daytime equatorial flight and two nighttime midlatitude flights are discussed. The last of these three flights, Nike Apache 14.533, showed elevated E region temperatures which are interpreted as the heating effect of a stable auroral red arc

    Radiative properties of Cirrus clouds: FIRE IFO case October 28, 1986

    Get PDF
    A description of the radiative properties of two cirrus clouds sampled on 10/28/88 in the FIRE cirrus IFO is presented. The clouds are characterized in terms of the broadband infrared effective emittance, cloud fractional absorptance, shortwave heating rate, cloud albedo and vertical velocity. The broadband fluxes used in these calculations were obtained from measurements made by pyranometers and pyrgeometers. The shortwave irradiances were corrected to a horizontal plane and normalized to the same time by taking into account Sabreliner flight information (i.e., pitch, roll, heading and angle of attack), as well as sun-earth geometry considerations. Since only one aircraft was used, broadband fluxes at different levels in the cloud were not measured simultaneously. As a result, sampling errors may occur due to the nonsteady state of the cloud field or due to the possibility that the flight legs were not flown directly above or below each other. To minimize these errors and to simplify the analysis, the necessary variables were averaged and the averages used in the calculations. The downwelling shortwave and longwave irradiances were used as selection criteria to remove cloud free data encountered along the data sampling leg

    Surface temperatures and temperature gradient features of the US Gulf Coast waters

    Get PDF
    Satellite thermal infrared data on the Gulf of Mexico show that a seasonal cycle exists in the horizontal surface temperature structure. In the fall, the surface temperatures of both coastal and deep waters are nearly uniform. With the onset of winter, atmospheric cold fronts, which are accompanied by dry, low temperature air and strong winds, draw heat from the sea. A band of cooler water forming on the inner shelf expands, until a thermal front develops seaward along the shelf break between the cold shelf waters and the warmer deep waters of the Gulf. Digital analysis of the satellite data was carried out in an interactive mode using a minicomputer and software. A time series of temperature profiles illustrates the temporal and spatial changes in the sea-surface temperature field

    Temperature sensitivity of Eppley broadband radiometers

    Get PDF
    February 1988.FIRE series no. 5.Includes bibliographical references.Eppley Laboratory Inc. model PIR pyrgeometers and model PSP pyranometers have built in temperature compensation circuitry designed to limit relative errors in the measurement of radiation to + /- 2% for a temperature range of -20 C to +40 C. A procedure developed to verify this specification and to determine the relative sensitivity to temperatures below -20 C is described . Results of this calibration and application to data correction are also presented.Sponsored by the National Science Foundation and National Aeronautics & Space Administration

    Black hole head-on collisions and gravitational waves with fixed mesh-refinement and dynamic singularity excision

    Full text link
    We present long-term-stable and convergent evolutions of head-on black hole collisions and extraction of gravitational waves generated during the merger and subsequent ring-down. The new ingredients in this work are the use of fixed mesh-refinement and dynamical singularity excision techniques. We are able to carry out head-on collisions with large initial separations and demonstrate that our excision infrastructure is capable of accommodating the motion of the individual black holes across the computational domain as well as their their merger. We extract gravitational waves from these simulations using the Zerilli-Moncrief formalism and find the ring-down radiation to be, as expected, dominated by the l=2, m=0 quasi-normal mode. The total radiated energy is about 0.1 % of the total ADM mass of the system.Comment: Revised version, 1 figure added, accepted for publication in Phys.Rev.D, 15 pages, 10 figures, revtex 4.

    Increases in the abundance of microbial genes encoding halotolerance and photosynthesis along a sediment salinity gradient

    Get PDF
    Biogeochemical cycles are driven by the metabolic activity of microbial communities, yet the environmental parameters that underpin shifts in the functional potential coded within microbial community genomes are still poorly understood. Salinity is one of the primary determinants of microbial community structure and can vary strongly along gradients within a variety of habitats. To test the hypothesis that shifts in salinity will also alter the bulk biogeochemical potential of aquatic microbial assemblages, we generated four metagenomic DNA sequence libraries from sediment samples taken along a continuous, natural salinity gradient in the Coorong lagoon, Australia, and compared them to physical and chemical parameters. A total of 392483 DNA sequences obtained from four sediment samples were generated and used to compare genomic characteristics along the gradient. The most significant shifts along the salinity gradient were in the genetic potential for halotolerance and photosynthesis, which were more highly represented in hypersaline samples. At these sites, halotolerance was achieved by an increase in genes responsible for the acquisition of compatible solutes-organic chemicals which influence the carbon, nitrogen and methane cycles of sediment. Photosynthesis gene increases were coupled to an increase in genes matching Cyanobacteria, which are responsible for mediating CO2 and nitrogen cycles. These salinity driven shifts in gene abundance will influence nutrient cycles along the gradient, controlling the ecology and biogeochemistry of the entire ecosystem. © 2012 Author(s)
    • …
    corecore