100 research outputs found

    Optimization of multi-gigabit transceivers for high speed data communication links in HEP Experiments

    Full text link
    The scheme of the data acquisition (DAQ) architecture in High Energy Physics (HEP) experiments consist of data transport from the front-end electronics (FEE) of the online detectors to the readout units (RU), which perform online processing of the data, and then to the data storage for offline analysis. With major upgrades of the Large Hadron Collider (LHC) experiments at CERN, the data transmission rates in the DAQ systems are expected to reach a few TB/sec within the next few years. These high rates are normally associated with the increase in the high-frequency losses, which lead to distortion in the detected signal and degradation of signal integrity. To address this, we have developed an optimization technique of the multi-gigabit transceiver (MGT) and implemented it on the state-of-the-art 20nm Arria-10 FPGA manufactured by Intel Inc. The setup has been validated for three available high-speed data transmission protocols, namely, GBT, TTC-PON and 10 Gbps Ethernet. The improvement in the signal integrity is gauged by two metrics, the Bit Error Rate (BER) and the Eye Diagram. It is observed that the technique improves the signal integrity and reduces BER. The test results and the improvements in the metrics of signal integrity for different link speeds are presented and discussed

    Optimization of multi-gigabit transceivers for high speed data communication links in HEP Experiments

    Get PDF
    The scheme of the data acquisition (DAQ) architecture in High Energy Physics (HEP) experiments consist of data transport from the front-end electronics (FEE) of the online detectors to the readout units (RU), which perform online processing of the data, and then to the data storage for offline analysis. With major upgrades of the Large Hadron Collider (LHC) experiments at CERN, the data transmission rates in the DAQ systems are expected to reach a few TB/sec within the next few years. These high rates are normally associated with the increase in the high-frequency losses, which lead to distortion in the detected signal and degradation of signal integrity. To address this, we have developed an optimization technique of the multi-gigabit transceiver (MGT) and implemented it on the state-of-the-art 20nm Arria-10 FPGA manufactured by Intel Inc. The setup has been validated for three available high-speed data transmission protocols, namely, GBT, TTC-PON and 10 Gbps Ethernet. The improvement in the signal integrity is gauged by two metrics, the Bit Error Rate (BER) and the Eye Diagram. It is observed that the technique improves the signal integrity and reduces BER. The test results and the improvements in the metrics of signal integrity for different link speeds are presented and discussed

    Weak Mixing Angle and Higgs Mass in Gauge-Higgs Unification Models with Brane Kinetic Terms

    Full text link
    We show that the idea of Gauge-Higgs unification(GHU) can be rescued from the constraint of weak mixing angle by introducing localized brane kinetic terms in higher dimensional GHU models with bulk and simple gauge groups. We find that those terms lead to a ratio between Higgs and W boson masses, which is a little bit deviated from the one derived in the standard model. From numerical analysis, we find that the current lower bound on the Higgs mass tends to prefer to exceptional groups E(6), E(7), E(8) rather than other groups like SU(3l), SO(2n+1), G(2), and F(4) in 6-dimensional(D) GHU models irrespective of the compactification scales. For the compactification scale below 1 TeV, the Higgs masses in 6D GHU models with SU(3l), SO(2n+1), G(2), and F(4) groups are predicted to be less than the current lower bound unless a model parameter responsible for re-scaling SU(2) gauge coupling is taken to be unnaturally large enough. To see how the situation is changed in more higher dimensional GHU model, we take 7D S^{3}/ Z_{2} and 8D T^{4}/ Z_{2} models. It turns out from our numerical analysis that these higher dimensional GHU models with gauge groups except for E(6) can lead to the Higgs boson whose masses are predicted to be above the current lower bound only for the compatification scale above 1 TeV without taking unnaturally large value of the model parameter, whereas the Higgs masses in the GHU models with E(6) are compatible with the current lower bound even for the compatification scale below 1 TeV.Comment: 22 pages, 4 figure

    Features of the ancestral bilaterian inferred from Platynereis dumerilii ParaHox genes

    Get PDF
    Background The ParaHox gene cluster is the evolutionary sister to the Hox cluster. Whilst the role of the Hox cluster in patterning the anterior-posterior axis of bilaterian animals is well established, and the organisation of vertebrate Hox clusters is intimately linked to gene regulation, much less is known about the more recently discovered ParaHox cluster. ParaHox gene clustering, and its relationship to expression, has only been described in deuterostomes. Conventional protostome models (Drosophila melanogaster and Caenorhabditis elegans) are secondarily derived with respect to ParaHox genes, suffering gene loss and cluster break-up. Results We provide the first evidence for ParaHox gene clustering from a less-derived protostome animal, the annelid Platynereis dumerilii. Clustering of these genes is thus not a sole preserve of the deuterostome lineage within Bilateria. This protostome ParaHox cluster is not entirely intact however, with Pdu-Cdx being on the opposite end of the same chromosome arm from Pdu-Gsx and Pdu-Xlox. From the genomic sequence around the P. dumerilii ParaHox genes the neighbouring genes are identified, compared with other taxa, and the ancestral arrangement deduced. Conclusion We relate the organisation of the ParaHox genes to their expression, and from comparisons with other taxa hypothesise that a relatively complex pattern of ParaHox gene expression existed in the protostome-deuterostome ancestor, which was secondarily simplified along several invertebrate lineages. Detailed comparisons of the gene content around the ParaHox genes enables the reconstruction of the genome surrounding the ParaHox cluster of the protostome-deuterostome ancestor, which existed over 550 million years ago.Publisher PDFPeer reviewe

    The <i>Ectocarpus</i> genome and the independent evolution of multicellularity in brown algae

    Get PDF
    Brown algae (Phaeophyceae) are complex photosynthetic organisms with a very different evolutionary history to green plants, to which they are only distantly related1. These seaweeds are the dominant species in rocky coastal ecosystems and they exhibit many interesting adaptations to these, often harsh, environments. Brown algae are also one of only a small number of eukaryotic lineages that have evolved complex multicellularity (Fig. 1).We report the 214 million base pair (Mbp) genome sequence of the filamentous seaweed Ectocarpus siliculosus (Dillwyn) Lyngbye, a model organism for brown algae, closely related to the kelps (Fig. 1). Genome features such as the presence of an extended set of light-harvesting and pigment biosynthesis genes and new metabolic processes such as halide metabolism help explain the ability of this organism to cope with the highly variable tidal environment. The evolution of multicellularity in this lineage is correlated with the presence of a rich array of signal transduction genes. Of particular interest is the presence of a family of receptor kinases, as the independent evolution of related molecules has been linked with the emergence of multicellularity in both the animal and green plant lineages. The Ectocarpus genome sequence represents an important step towards developing this organism as a model species, providing the possibility to combine genomic and genetic2 approaches to explore these and other aspects of brown algal biology further

    Accelerated surgery versus standard care in hip fracture (HIP ATTACK): an international, randomised, controlled trial

    Get PDF

    Infected pancreatic necrosis: outcomes and clinical predictors of mortality. A post hoc analysis of the MANCTRA-1 international study

    Get PDF
    : The identification of high-risk patients in the early stages of infected pancreatic necrosis (IPN) is critical, because it could help the clinicians to adopt more effective management strategies. We conducted a post hoc analysis of the MANCTRA-1 international study to assess the association between clinical risk factors and mortality among adult patients with IPN. Univariable and multivariable logistic regression models were used to identify prognostic factors of mortality. We identified 247 consecutive patients with IPN hospitalised between January 2019 and December 2020. History of uncontrolled arterial hypertension (p = 0.032; 95% CI 1.135-15.882; aOR 4.245), qSOFA (p = 0.005; 95% CI 1.359-5.879; aOR 2.828), renal failure (p = 0.022; 95% CI 1.138-5.442; aOR 2.489), and haemodynamic failure (p = 0.018; 95% CI 1.184-5.978; aOR 2.661), were identified as independent predictors of mortality in IPN patients. Cholangitis (p = 0.003; 95% CI 1.598-9.930; aOR 3.983), abdominal compartment syndrome (p = 0.032; 95% CI 1.090-6.967; aOR 2.735), and gastrointestinal/intra-abdominal bleeding (p = 0.009; 95% CI 1.286-5.712; aOR 2.710) were independently associated with the risk of mortality. Upfront open surgical necrosectomy was strongly associated with the risk of mortality (p &lt; 0.001; 95% CI 1.912-7.442; aOR 3.772), whereas endoscopic drainage of pancreatic necrosis (p = 0.018; 95% CI 0.138-0.834; aOR 0.339) and enteral nutrition (p = 0.003; 95% CI 0.143-0.716; aOR 0.320) were found as protective factors. Organ failure, acute cholangitis, and upfront open surgical necrosectomy were the most significant predictors of mortality. Our study confirmed that, even in a subgroup of particularly ill patients such as those with IPN, upfront open surgery should be avoided as much as possible. Study protocol registered in ClinicalTrials.Gov (I.D. Number NCT04747990)

    Phase Behavior of Aqueous Na-K-Mg-Ca-CI-NO3 Mixtures: Isopiestic Measurements and Thermodynamic Modeling

    Get PDF
    A comprehensive model has been established for calculating thermodynamic properties of multicomponent aqueous systems containing the Na{sup +}, K{sup +}, Mg{sup 2+}, Ca{sup 2+}, Cl{sup -}, and NO{sub 3}{sup -} ions. The thermodynamic framework is based on a previously developed model for mixed-solvent electrolyte solutions. The framework has been designed to reproduce the properties of salt solutions at temperatures ranging from the freezing point to 300 C and concentrations ranging from infinite dilution to the fused salt limit. The model has been parameterized using a combination of an extensive literature database and new isopiestic measurements for thirteen salt mixtures at 140 C. The measurements have been performed using Oak Ridge National Laboratory's (ORNL) previously designed gravimetric isopiestic apparatus, which makes it possible to detect solid phase precipitation. Water activities are reported for mixtures with a fixed ratio of salts as a function of the total apparent salt mole fraction. The isopiestic measurements reported here simultaneously reflect two fundamental properties of the system, i.e., the activity of water as a function of solution concentration and the occurrence of solid-liquid transitions. The thermodynamic model accurately reproduces the new isopiestic data as well as literature data for binary, ternary and higher-order subsystems. Because of its high accuracy in calculating vapor-liquid and solid-liquid equilibria, the model is suitable for studying deliquescence behavior of multicomponent salt systems

    : Injection 50 MeV dans Ie PSB

    No full text

    Rollover Dynamics of a Narrow Tilting Three-Wheeled Vehicle

    No full text
    A narrow-track vehicle possesses many advantages like fuel efficiency and reduced road footprint among others. But the main drawback of this model stems from the fact that they tend to rollover more easily due to their narrow base area. In order to overcome this rollover instability, these vehicles are made to tilt to obtain increased virtual base area. The focus of this paper is to analyse the minimum lean angle necessary for a narrow three-wheeled vehicle under lateral acceleration to negotiate a curve safely. In addition, the influence of the horizontal positions of the centre of mass of the vehicle over the rollover speeds is studied
    corecore