130,931 research outputs found
Towards an understanding of hole superconductivity
From the very beginning K. Alex M\"uller emphasized that the materials he and
George Bednorz discovered in 1986 were superconductors. Here I would
like to share with him and others what I believe to be key reason for why
high cuprates as well as all other superconductors are hole
superconductors, which I only came to understand a few months ago. This paper
is dedicated to Alex M\"uller on the occasion of his 90th birthday.Comment: Dedicated to Alex M\"uller on the Occasion of his 90th Birthday.
arXiv admin note: text overlap with arXiv:1703.0977
QCD axion and quintessential axion
The axion solution of the strong CP problem is reviewed together with the
other strong CP solutions. We also point out the quintessential
axion(quintaxion) whose potential can be extremely flat due to the tiny ratio
of the hidden sector quark mass and the intermediate hidden sector scale. The
quintaxion candidates are supposed to be the string theory axions, the model
independent or the model dependent axions.Comment: 15 pages. Talk presented at Castle Ringberg, June 9-14, 200
Impact of Driving Cycles on Greenhouse Gas (GHG) Emissions, Global Warming Potential (GWP) and Fuel Economy for SI Car Real World Driving
The transport sector is one of the major contributors to greenhouse gas emissions. This study investigated three greenhouse gases emitted from road transport: CO2, N2O and CH4 emissions as a function of engine warm up and driving cycles. Five different urban driving cycles were developed and used including free flow driving and congested driving. An in-vehicle FTIR (Fourier Transform Inferred) emission measurement system was installed on a EURO2 emission compliant SI (Spark Ignition) car for emissions measurement at a rate of 0.5 HZ under real world urban driving conditions. This emission measurement system was calibrated on a standard CVS (Constant Volume Sampling) measurement system and showed excellent agreement on CO2 measurement with CVS results. The N2O and CH4 measurement was calibrated using calibration gas in lab. A MAX710 real time in-vehicle fuel consumption measurement system was installed in the test vehicle and real time fuel consumption was then obtained. The temperatures across the TWC (Three Way Catalyst) and engine out exhaust gas lambda were measured. The GHG (greenhouse gas) mass emissions and consequent GWP (Global Warming Potential) for different urban diving conditions were analyzed and presented. The results provided a better understanding of traffic related greenhouse gas emission profile in urban area and will contribute to the control of climate change
Stress-Energy Tensor Induced by Bulk Dirac Spinor in Randall-Sundrum Model
Motivated by the possible extension into a supersymmetric Randall-Sundrum
(RS) model, we investigate the properties of the vacuum expectation value (VEV)
of the stress-energy tensor for a quantized bulk Dirac spinor field in the RS
geometry and compare it with that for a real scalar field. This is carried out
via the Green function method based on first principles without invoking the
degeneracy factor, whose validity in a warp geometry is a priori unassured. In
addition, we investigate the local behavior of the Casimir energy near the two
branes. One salient feature we found is that the surface divergences near the
two branes have opposite signs. We argue that this is a generic feature of the
fermionic Casimir energy density due to its parity transformation in the fifth
dimension. Furthermore, we investigate the self-consistency of the RS metric
under the quantum correction due to the stress-energy tensor. It is shown that
the VEV of the stress-energy tensor and the classical one become comparable
near the visible brane if k ~ M ~ M_Pl (the requirement of no hierarchy
problem), where k is the curvature of the RS warped geometry and M the
5-dimensional Planck mass. In that case the self-consistency of RS model that
includes bulk fields is in doubt. If, however, k <~ M, then an approximate
self-consistency of the RS-type metric may still be satisfied.Comment: 7 pages with 2 figure
User-driven design of robot costume for child-robot interactions among children with cognitive impairment
The involvement of arts and psychology elements in robotics research for children with cognitive impairment is still limited. However, the combination of robots, arts, psychology and education in the development of robots could significantly contribute to the improvement of social interaction skills among children with cognitive impairment. In this article, we would like to share our work on building and innovating the costume of LUCA's robot, which incorporating the positive psychological perspectives and arts values for children with cognitive impairment. Our goals are (1) to educate arts students in secondary arts school on the importance of social robot appearance for children with cognitive impairment, and (2) to select the best costume for future child-robot interaction study with children with cognitive impairments
Modeling chemistry in and above snow at Summit, Greenland – Part 1: Model description and results
Sun-lit snow is increasingly recognized as a chemical reactor that plays an active role in uptake, transformation, and release of atmospheric trace gases. Snow is known to influence boundary layer air on a local scale, and given the large global surface coverage of snow may also be significant on regional and global scales. We present a new detailed one-dimensional snow chemistry module that has been coupled to the 1-D atmospheric boundary layer model MISTRA. The new 1-D snow module, which is dynamically coupled to the overlaying atmospheric model, includes heat transport in the snowpack, molecular diffusion, and wind pumping of gases in the interstitial air. The model includes gas phase chemical reactions both in the interstitial air and the atmosphere. Heterogeneous and multiphase chemistry on atmospheric aerosol is considered explicitly. The chemical interaction of interstitial air with snow grains is simulated assuming chemistry in a liquid-like layer (LLL) on the grain surface. The coupled model, referred to as MISTRA-SNOW, was used to investigate snow as the source of nitrogen oxides (NOx) and gas phase reactive bromine in the atmospheric boundary layer in the remote snow covered Arctic (over the Greenland ice sheet) as well as to investigate the link between halogen cycling and ozone depletion that has been observed in interstitial air. The model is validated using data taken 10 June–13 June, 2008 as part of the Greenland Summit Halogen-HOx experiment (GSHOX). The model predicts that reactions involving bromide and nitrate impurities in the surface snow can sustain atmospheric NO and BrO mixing ratios measured at Summit, Greenland during this period
Tramp Ship Scheduling Problem with Berth Allocation Considerations and Time-dependent Constraints
This work presents a model for the Tramp Ship Scheduling problem including
berth allocation considerations, motivated by a real case of a shipping
company. The aim is to determine the travel schedule for each vessel
considering multiple docking and multiple time windows at the berths. This work
is innovative due to the consideration of both spatial and temporal attributes
during the scheduling process. The resulting model is formulated as a
mixed-integer linear programming problem, and a heuristic method to deal with
multiple vessel schedules is also presented. Numerical experimentation is
performed to highlight the benefits of the proposed approach and the
applicability of the heuristic. Conclusions and recommendations for further
research are provided.Comment: 16 pages, 3 figures, 5 tables, proceedings paper of Mexican
International Conference on Artificial Intelligence (MICAI) 201
The anomalous U(1) global symmetry and flavors from an SU(5) x SU(5) GUT in orbifold compactification
In string compactifications, frequently there appears the anomalous U(1)
gauge symmetry which belonged to E8E8 of the heterotic string. This
anomalous U(1) gauge boson obtains mass at the compactification scale, just
below GeV, by absorbing one pseudoscalar (corresponding to the
model-independent axion) from the second rank anti-symmetric tensor field
.
Below the compactification scale, there results a global symmetry U(1) whose charge is the original gauge U(1) charge. This is
the most natural global symmetry, realizing the "invisible" axion. This global
symmetry U(1) is suitable for a flavor symmetry. In the simplest
compactification model with the flipped SU(5) grand unification, we calculate
all the low energy parameters in terms of the vacuum expectation values of the
standard model singlets.Comment: 18 pages, 4 figur
Wave intensity analysis and its application to the coronary circulation.
Wave intensity analysis (WIA) is a technique developed from the field of gas dynamics that is now being applied to assess cardiovascular physiology. It allows quantification of the forces acting to alter flow and pressure within a fluid system, and as such it is highly insightful in ascribing cause to dynamic blood pressure or velocity changes. When co-incident waves arrive at the same spatial location they exert either counteracting or summative effects on flow and pressure. WIA however allows waves of different origins to be measured uninfluenced by other simultaneously arriving waves. It therefore has found particular applicability within the coronary circulation where both proximal (aortic) and distal (myocardial) ends of the coronary artery can markedly influence blood flow. Using these concepts, a repeating pattern of 6 waves has been consistently identified within the coronary arteries, 3 originating proximally and 3 distally. Each has been associated with a particular part of the cardiac cycle. The most clinically relevant wave to date is the backward decompression wave, which causes the marked increase in coronary flow velocity observed at the start of the diastole. It has been proposed that this wave is generated by the elastic re-expansion of the intra-myocardial blood vessels that are compressed during systolic contraction. Particularly by quantifying this wave, WIA has been used to provide mechanistic and prognostic insight into a number of conditions including aortic stenosis, left ventricular hypertrophy, coronary artery disease and heart failure. It has proven itself to be highly sensitive and as such a number of novel research directions are encouraged where further insights would be beneficial
Health state values for the HUI 2 descriptive system: results from a UK survey
This paper reports the results of a study to estimate a statistical health state valuation model for a revised version of the Health Utilities Index Mark 2, using Standard Gamble health state preference data. A sample of 51 health states were valued by a sample of the 198 members of the UK general population. Models are estimated for predicting health state valuations for all 8,000 states defined by the revised HUI2. The recommended model produces logical and significant coefficients for all levels of all dimensions in the HUI2. These coefficients appear to be robust across model specifications. This model performs well in predicting the observed health state values within the valuation sample and for a separate validation sample of health states. However, there are concerns over large prediction errors for two health states in the valuation sample. These problems must be balanced against concerns over the validity of using the VAS based health state valuation data of the original HUI2 valuation model.HUI2
- …
