789 research outputs found

    Some Reflections on Working-Class Ontology and Epistemology — or Why Teaching in Higher Education Needs to Be More Concrete

    Get PDF
    Based on my own experiences with having one foot in academia and the other in construction, I reflect on how the tendential form of work among the working class affects their ontology and epistemology, and discuss what this may mean for teaching and learning in higher education. I attempt to write from both a working-class and middle-class perspective. This I do because it was the clashing of my working-class and middle-class experiences that caused me to reflect on forms of work in relation to ontology and epistemology; I need to present both perspectives to make sense of the argument

    Standards for Networking Ancient Person-data: Digital approaches to problems in prosopographical space

    Get PDF
    Prosopographies disambiguate names appearing in sources by creating lists of persons, but the progress of scholarship now makes these lists difficult to maintain. In a digital context unique stable identifiers can be reshuffled ad libitum when searching and ordering information. Digital data increasingly brings together complementary research outputs: the Standards for Networking Ancient Prosopographies project takes on the challenge of creating an aggregated resource, adopting a Linked Open Data approach. In this paper we shall present three case studies highlighting the promise and problems of encoding unambiguous identities, titulature and other disambiguating information, and treating divine figures as person-data, respectively. Digital approaches are tools for research, assisting rather than replacing the historian, who remains central to the research endeavor

    The atmospheric effects of stratospheric aircraft: A current consensus

    Get PDF
    In the early 1970's, a fleet of supersonic aircraft flying in the lower stratosphere was proposed. A large fleet was never built for economic, political, and environmental reasons. Technological improvements may make it economically feasible to develop supersonic aircraft for current markets. Some key results of earlier scientific programs designed to assess the impact of aircraft emissions on stratospheric ozone are reviewed, and factors that must be considered to assess the environmental impact of aircraft exhaust are discussed. These include the amount of nitrogen oxides injected in the stratosphere, horizontal transport, and stratosphere/troposphere assessment models are presented. Areas in which improvements in scientific understanding and model representation must be made to reduce the uncertainty in model calculations are identified

    Theory and observations: Model simulations of the period 1955-1985

    Get PDF
    The main objective of the theoretical studies presented here is to apply models of stratospheric chemistry and transport in order to understand the processes that control stratospheric ozone and that are responsible for the observed variations. The model calculations are intended to simulate the observed behavior of atmospheric ozone over the past three decades (1955-1985), for which there exists a substantial record of both ground-based and, more recently, satellite measurements. Ozone concentrations in the atmosphere vary on different time scales and for several different causes. The models described here were designed to simulate the effect on ozone of changes in the concentration of such trace gases as CFC, CH4, N2O, and CO2. Changes from year to year in ultraviolet radiation associated with the solar cycle are also included in the models. A third source of variability explicitly considered is the sporadic introduction of large amounts of NO sub x into the stratosphere during atmospheric nuclear tests

    Relative effects on stratospheric ozone of halogenated methanes and ethanes of social and industrial interest

    Get PDF
    Four atmospheric modeling groups have calculated relative effects of several halocarbons (chlorofluorocarbons (CFC's)-11, 12, 113, 114, and 115; hydrochlorofluorocarbons (HCFC's) 22, 123, 124, 141b, and 142b; hydrofluorocarbons (HFC's) 125, 134a, 143a, and 152a, carbon tetrachloride; and methyl chloroform) on stratospheric ozone. Effects on stratospheric ozone were calculated for each compound and normalized relative to the effect of CFC-11. These models include the representations for homogeneous physical and chemical processes in the middle atmosphere but do no account for either heterogeneous chemistry or polar dynamics which are important in the spring time loss of ozone over Antarctica. Relative calculated effects using a range of models compare reasonably well. Within the limits of the uncertainties of these model results, compounds now under consideration as functional replacements for fully halogenated compounds have modeled stratospheric ozone reductions of 10 percent or less of that of CFC-11. Sensitivity analyses examined the sensitivity of relative calculated effects to levels of other trace gases, assumed transport in the models, and latitudinal and seasonal local dependencies. Relative effects on polar ozone are discussed in the context of evolving information on the special processes affecting ozone, especially during polar winter-springtime. Lastly, the time dependency of relative effects were calculated

    Radiative forcing from modelled and observed stratospheric ozone changes due to the 11-year solar cycle

    No full text
    International audienceThree analyses of satellite observations and two sets of model studies are used to estimate changes in the stratospheric ozone distribution from solar minimum to solar maximum and are presented for three different latitudinal bands: Poleward of 30° north, between 30° north and 30° south and poleward of 30° south. In the model studies the solar cycle impact is limited to changes in UV fluxes. There is a general agreement between satellite observation and model studies, particular at middle and high northern latitudes. Ozone increases at solar maximum with peak values around 40 km. The profiles are used to calculate the radiative forcing (RF) from solar minimum to solar maximum. The ozone RF, calculated with two different radiative transfer schemes is found to be negligible (a magnitude of 0.01 Wm?2 or less), compared to the direct RF due to changes in solar irradiance, since contributions from the longwave and shortwave nearly cancel each other. The largest uncertainties in the estimates come from the lower stratosphere, where there is significant disagreement between the different ozone profiles
    • …
    corecore