387 research outputs found
Peptide-MHC heterodimers show that thymic positive selection requires a more restricted set of self-peptides than negative selection
T cell selection and maturation in the thymus depends on the interactions between T cell receptors (TCRs) and different self-peptide–major histocompatibility complex (pMHC) molecules. We show that the affinity of the OT-I TCR for its endogenous positively selecting ligands, Catnb-H-2Kb and Cappa1-H-2Kb, is significantly lower than for previously reported positively selecting altered peptide ligands. To understand how these extremely weak endogenous ligands produce signals in maturing thymocytes, we generated soluble monomeric and dimeric peptide–H-2Kb ligands. Soluble monomeric ovalbumin (OVA)-Kb molecules elicited no detectable signaling in OT-I thymocytes, whereas heterodimers of OVA-Kb paired with positively selecting or nonselecting endogenous peptides, but not an engineered null peptide, induced deletion. In contrast, dimer-induced positive selection was much more sensitive to the identity of the partner peptide. Catnb-Kb–Catnb-Kb homodimers, but not heterodimers of Catnb-Kb paired with a nonselecting peptide-Kb, induced positive selection, even though both ligands bind the OT-I TCR with detectable affinity. Thus, both positive and negative selection can be driven by dimeric but not monomeric ligands. In addition, positive selection has much more stringent requirements for the partner self-pMHC
Antigen-specific CD4 cells assist CD8 T-effector cells in eliminating keratinocytes
Keratinocytes expressing tumor or viral antigens can be eliminated by antigen-primed CD8 cytotoxic T cells. CD4 T-helper cells help induction of CD8 cytotoxic T cells from naive precursors and generation of CD8 T-cell memory. In this study, we show, unexpectedly, that CD4 cells are also required to assist primed CD8 effector T cells in rejection of skin expressing human growth hormone, a neo-self-antigen, in keratinocytes. The requirement for CD4 cells can be substituted by CD40 costimulation. Rejection of skin expressing ovalbumin (OVA), a non-self-antigen, by primed CD8 cytotoxic T cells can in contrast occur without help from antigen-specific CD4 T cells. However, rejection of OVA expressing keratinocytes is helped by antigen-specific CD4 T cells if only low numbers of primed or naive OVA-specific CD8 T cells are available. Effective immunotherapy directed at antigens expressed in squamous cancer may therefore be facilitated by induction of tumor antigen-specific CD4 helper T cells, as well as cytotoxic CD8 T cells
The influence of T cell development on pathogen specificity and autoreactivity
T cells orchestrate adaptive immune responses upon activation. T cell
activation requires sufficiently strong binding of T cell receptors on their
surface to short peptides derived from foreign proteins bound to protein
products of the major histocompatibility (MHC) gene products, which are
displayed on the surface of antigen presenting cells. T cells can also interact
with peptide-MHC complexes, where the peptide is derived from host (self)
proteins. A diverse repertoire of relatively self-tolerant T cell receptors is
selected in the thymus. We study a model, computationally and analytically, to
describe how thymic selection shapes the repertoire of T cell receptors, such
that T cell receptor recognition of pathogenic peptides is both specific and
degenerate. We also discuss the escape probability of autoimmune T cells from
the thymus.Comment: 12 pages, 7 figure
Temporal Regulation of Rapamycin on Memory CTL Programming by IL-12
Mammalian target of rapamycin (mTOR) is a master regulator of cell growth. Recent reports have defined its important role in memory cytotoxic T lymphocyte (CTL) differentiation in infections and memory programming. We report that rapamycin regulated memory CTL programming by IL-12 to a similar level in a wide range of concentrations, and the enhanced memory CTLs by rapamycin were functional and provided similar protection against Listeria Monocytogenes challenge compared to the control. In addition, rapamycin-experienced CTLs went through substantially enhanced proliferation after transfer into recipients. Furthermore, the regulatory function of rapamycin on CD62L expression in memory CTLs was mainly contributed by the presence of rapamycin in the first 24-hr of stimulation in vitro, whereas the effective window of rapamycin on the size of memory CTLs was determined between 24 to 72 hrs. In conclusion, rapamycin regulates IL-12-driven programming of CTLs to a similar level in a wide range of concentrations, and regulates the phenotype and the size of memory CTLs in different temporal windows
Antigen-specific clonal expansion and cytolytic effector function of CD8+ T lymphocytes depend on the transcription factor Bcl11b
CD8+ T lymphocytes mediate the immune response to viruses, intracellular bacteria, protozoan parasites, and tumors. We provide evidence that the transcription factor Bcl11b/Ctip2 controls hallmark features of CD8+ T cell immunity, specifically antigen (Ag)-dependent clonal expansion and cytolytic activity. The reduced clonal expansion in the absence of Bcl11b was caused by altered proliferation during the expansion phase, with survival remaining unaffected. Two genes with critical roles in TCR signaling were deregulated in Bcl11b-deficient CD8+ T cells, CD8 coreceptor and Plcγ1, both of which may contribute to the impaired responsiveness. Bcl11b was found to bind the E8I, E8IV, and E8V, but not E8II or E8III, enhancers. Thus, Bcl11b is one of the transcription factors implicated in the maintenance of optimal CD8 coreceptor expression in peripheral CD8+ T cells through association with specific enhancers. Short-lived Klrg1hiCD127lo effector CD8+ T cells were formed during the course of infection in the absence of Bcl11b, albeit in smaller numbers, and their Ag-specific cytolytic activity on a per-cell basis was altered, which was associated with reduced granzyme B and perforin
Interplay between CD8α+ Dendritic Cells and Monocytes in Response to Listeria monocytogenes Infection Attenuates T Cell Responses
During the course of a microbial infection, different antigen presenting cells (APCs) are exposed and contribute to the ensuing immune response. CD8α+ dendritic cells (DCs) are an important coordinator of early immune responses to the intracellular bacteria Listeria monocytogenes (Lm) and are crucial for CD8+ T cell immunity. In this study, we examine the contribution of different primary APCs to inducing immune responses against Lm. We find that CD8α+ DCs are the most susceptible to infection while plasmacytoid DCs are not infected. Moreover, CD8α+ DCs are the only DC subset capable of priming an immune response to Lm in vitro and are also the only APC studied that do so when transferred into β2 microglobulin deficient mice which lack endogenous cross-presentation. Upon infection, CD11b+ DCs primarily secrete low levels of TNFα while CD8α+ DCs secrete IL-12 p70. Infected monocytes secrete high levels of TNFα and IL-12p70, cytokines associated with activated inflammatory macrophages. Furthermore, co-culture of infected CD8α+ DCs and CD11b+ DCs with monocytes enhances production of IL-12 p70 and TNFα. However, the presence of monocytes in DC/T cell co-cultures attenuates T cell priming against Lm-derived antigens in vitro and in vivo. This suppressive activity of spleen-derived monocytes is mediated in part by both TNFα and inducible nitric oxide synthase (iNOS). Thus these monocytes enhance IL-12 production to Lm infection, but concurrently abrogate DC-mediated T cell priming
Coreceptor affinity for MHC defines peptide specificity requirements for TCR interaction with coagonist peptide–MHC
Recent work has demonstrated that nonstimulatory endogenous peptides can enhance T cell recognition of antigen, but MHCI- and MHCII-restricted systems have generated very different results. MHCII-restricted TCRs need to interact with the nonstimulatory peptide–MHC (pMHC), showing peptide specificity for activation enhancers or coagonists. In contrast, the MHCI-restricted cells studied to date show no such peptide specificity for coagonists, suggesting that CD8 binding to noncognate MHCI is more important. Here we show how this dichotomy can be resolved by varying CD8 and TCR binding to agonist and coagonists coupled with computer simulations, and we identify two distinct mechanisms by which CD8 influences the peptide specificity of coagonism. Mechanism 1 identifies the requirement of CD8 binding to noncognate ligand and suggests a direct relationship between the magnitude of coagonism and CD8 affinity for coagonist pMHCI. Mechanism 2 describes how the affinity of CD8 for agonist pMHCI changes the requirement for specific coagonist peptides. MHCs that bind CD8 strongly were tolerant of all or most peptides as coagonists, but weaker CD8-binding MHCs required stronger TCR binding to coagonist, limiting the potential coagonist peptides. These findings in MHCI systems also explain peptide-specific coagonism in MHCII-restricted cells, as CD4–MHCII interaction is generally weaker than CD8–MHCI.National Institutes of Health (U.S.). Pioneer Awar
Quantitative Analysis of Protein Phosphorylations and Interactions by Multi-Colour IP-FCM as an Input for Kinetic Modelling of Signalling Networks
BACKGROUND: To understand complex biological signalling mechanisms, mathematical modelling of signal transduction pathways has been applied successfully in last few years. However, precise quantitative measurements of signal transduction events such as activation-dependent phosphorylation of proteins, remains one bottleneck to this success. METHODOLOGY/PRINCIPAL FINDINGS: We use multi-colour immunoprecipitation measured by flow cytometry (IP-FCM) for studying signal transduction events to unrivalled precision. In this method, antibody-coupled latex beads capture the protein of interest from cellular lysates and are then stained with differently fluorescent-labelled antibodies to quantify the amount of the immunoprecipitated protein, of an interaction partner and of phosphorylation sites. The fluorescence signals are measured by FCM. Combining this procedure with beads containing defined amounts of a fluorophore allows retrieving absolute numbers of stained proteins, and not only relative values. Using IP-FCM we derived multidimensional data on the membrane-proximal T-cell antigen receptor (TCR-CD3) signalling network, including the recruitment of the kinase ZAP70 to the TCR-CD3 and subsequent ZAP70 activation by phosphorylation in the murine T-cell hybridoma and primary murine T cells. Counter-intuitively, these data showed that cell stimulation by pervanadate led to a transient decrease of the phospho-ZAP70/ZAP70 ratio at the TCR. A mechanistic mathematical model of the underlying processes demonstrated that an initial massive recruitment of non-phosphorylated ZAP70 was responsible for this behaviour. Further, the model predicted a temporal order of multisite phosphorylation of ZAP70 (with Y319 phosphorylation preceding phosphorylation at Y493) that we subsequently verified experimentally. CONCLUSIONS/SIGNIFICANCE: The quantitative data sets generated by IP-FCM are one order of magnitude more precise than Western blot data. This accuracy allowed us to gain unequalled insight into the dynamics of the TCR-CD3-ZAP70 signalling network
- …