112 research outputs found

    Contraversive neglect? A modulation of visuospatial neglect in association with contraversive pushing

    Get PDF
    Objective: Contraversive pushing (CP) is a neurologic disorder characterized by a lateral postural imbalance. Pusher patients actively push toward their contralesional side due to a misperception of the body's orientation in relation to gravity. Although not every patient with CP suffers from spatial neglect (SN), both phenomena are highly correlated in right-hemispheric patients. The present study investigates whether peripersonal visuospatial functioning differs in neglect patients with versus without CP (NP+ vs. NP+ patients). Method: Eighteen right-hemispheric stroke patients with SN were included, of which 17 in a double-blind case-control study and 1 single case with posterior pushing to supplement the discourse. A computer-based visuospatial navigation task, in which lateralized deviation can freely emerge, was used to quantify visuospatial behavior. In addition, visuospatial orienting was monitored using line bisection. Results: Significant intergroup differences were found. The NP+ patients demonstrated a smaller ipsilesional navigational deviation and more cross-over (contralesional instead of ipsilesional deviation) in long line bisection. As such, they demonstrated a contraversive (contralesionally directed) shift in comparison with the NP+ patients. Conclusions: These findings highlight the similarity between 2 systems of space representation. They are consistent with a coherence between the neural processing system that mainly provides for postural control, and the one responsible for nonpredominantly postural, visuospatial behavior

    An assessment of hydrocarbon species in the methanol-to-hydrocarbon reaction over a ZSM-5 catalyst.

    Get PDF
    A ZSM-5 catalyst is examined in relation to the methanol-to-hydrocarbon (MTH) reaction as a function of reaction temperature and time-on-stream. The reaction profile is characterised using in-line mass spectrometry. Furthermore, the material contained within a catch-pot downstream from the reactor is analysed using gas chromatography-mass spectrometry. For a fixed methanol feed, reaction conditions are selected to define various stages of the reaction coordinate: (i) initial methanol adsorption at a sub-optimum reaction temperature (1 h at 200 °C); (ii) initial stages of reaction at an optimised reaction temperature (1 h at 350 °C); (iii) steady-state operation at an optimised reaction temperature (3 days at 350 °C); and (iv) accelerated ageing (3 days at 400 °C). Post-reaction, the catalyst samples are analysed ex situ by a combination of temperature-programmed oxidation (TPO) and spectroscopically by electron paramagnetic resonance (EPR), diffuse-reflectance infrared and inelastic neutron scattering (INS) spectroscopies. The TPO measurements provide an indication of the degree of 'coking' experienced by each sample. The EPR measurements detect aromatic radical cations. The IR and INS measurements reveal the presence of retained hydrocarbonaceous species, the nature of which are discussed in terms of the well-developed 'hydrocarbon pool' mechanism. This combination of experimental evidence, uniquely applied to this reaction system, establishes the importance of retained hydrocarbonaceous species in effecting the product distribution of this economically relevant reaction system

    LHC Magnet Tests: Operational Techniques and Empowerment for Successful Completion

    Get PDF
    The LHC magnet tests operation team developed various innovative techniques, particularly since early 2004, to complete the superconductor magnet tests by Feb. 2007. Overall and cryogenic priority handling, rapid on-bench thermal cycling, rule-based goodness evaluation on round-the-clock basis, multiple, mashed web systems are some of these techniques applied with rigour for successful tests completion in time. This paper highlights these operation empowerment tools which had a pivotal role for success. A priority handling method was put in place to enable maximum throughput from twelve test benches, having many different constraints. For the cryogenics infrastructure, it implied judicious allocation of limited resources to the benches. Rapid On-Bench Thermal Cycle was a key strategy to accelerate magnets tests throughput, saving time and simplifying logistics. First level magnet appraisal was developed for 24 hr decision making so as to prepare a magnet further for LHC or keep it on standby. Web based systems (Tests Management and E-Traveller) were other essential ideas to track & coordinate various stages of tests handled by different teams

    Application of Inelastic Neutron Scattering to the Methanol-to-Gasoline Reaction Over a ZSM-5 Catalyst

    Get PDF
    Inelastic neutron scattering (INS) is used to investigate a ZSM-5 catalyst that has been exposed to methanol vapour at elevated temperature. In-line mass spectrometric analysis of the catalyst exit stream confirms methanol-to-gasoline chemistry, whilst ex situ INS measurements detect hydrocarbon species formed in/on the catalyst during methanol conversion. These preliminary studies demonstrate the capability of INS to complement infrared spectroscopic characterisation of the hydrocarbon pool present in/on ZSM-5 during the MTG reaction

    Synthesis of reaction-adapted zeolites as methanol-to-olefins catalysts with mimics of reaction intermediates as organic structure-directing agents

    Full text link
    [EN] Catalysis with enzymes and zeolites have in common the presence of well-defined single active sites and pockets/cavities where the reaction transition states can be stabilized by longer-range interactions. We show here that for a complex reaction, such as the conversion of methanol-to-olefins (MTO), it is possible to synthesize reaction-adapted zeolites by using mimics of the key molecular species involved in the MTO mechanism. Effort has focused on the intermediates of the paring mechanism because the paring is less favoured energetically than the side-chain route. All the organic structure-directing agents based on intermediate mimics crystallize cage-based small-pore zeolitic materials, all of them capable of performing the MTO reaction. Among the zeolites obtained, RTH favours the whole reaction steps following the paring route and gives the highest propylene/ethylene ratio compared to traditional CHA-related zeolites (3.07 and 0.86, respectively).Li, C.; Paris, C.; Martínez-Triguero, J.; Boronat Zaragoza, M.; Moliner Marin, M.; Corma Canós, A. (2018). Synthesis of reaction-adapted zeolites as methanol-to-olefins catalysts with mimics of reaction intermediates as organic structure-directing agents. Nature Catalysis. 1(7):547-554. https://doi.org/10.1038/s41929-018-0104-7S54755417Stocker, M. Methanol-to-hydrocarbons: catalytic materials and their behavior. Micro. Mesopor. Mater. 29, 3–48 (1999).Tian, P., Wei, Y., Ye, M. & Liu, Z. Methanol to olefins (MTO): from fundamentals to commercialization. ACS Catal. 5, 1922–1938 (2015).Ilias, S. & Bhan, A. Mechanism of the catalytic conversion of methanol to hydrocarbons. ACS Catal. 3, 18–31 (2013).Olsbye, U. et al. Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity. Angew. Chem. Int. Ed. 24, 5810–5831 (2012).Hemelsoet, K., Van der Mynsbrugge, J., De Wispelaere, K., Waroquier, M. & Van Speybroeck, V. Unraveling the reaction mechanisms governing methanol-to-olefins catalysis by theory and experiment. ChemPhysChem 14, 1526–1545 (2013).Song, W., Haw, J. F., Nicholas, J. B. & Heneghan, C. S. Methylbenzenes are the organic reaction centers for methanol-to-olefin catalysis on HSAPO-34. J. Am. Chem. Soc. 122, 10726–10727 (2000).Arstad, B. & Kolboe, S. The reactivity of molecules trapped within the SAPO-34 cavities in the methanol-to-hydrocarbons reaction. J. Am. Chem. Soc. 123, 8137–8138 (2001).Xu, T. et al. Synthesis of a benzenium ion in a zeolite with use of a catalytic flow reactor. J. Am. Chem. Soc. 120, 4025–4026 (1998).Song, W., Nicholas, J. B., Sassi, A. & Haw, J. F. Synthesis of the heptamethylbenzene cation in zeolite beta: in situ NMR and theory. Catal. Lett. 81, 49–53 (2002).Xu, S. et al. Direct observation of cyclic carbenium ions and their role in the catalytic cycle of the metahnol-to-olefin reaction over chabazite zeolites. Angew. Chem. Int. Ed. 52, 11564–11568 (2013).Chen, J. et al. Elucidating the olefin formation mechanism in the methanol to olefin reaction over AlPO-18 and SAPO-18. Catal. Sci. Tech. 4, 3268–3277 (2014).Haw, J. F. et al. Roles for cyclopentenyl cations in the synthesis of hydrocarbons from methanol on zeolite catalyst HZSM-5. J. Am. Chem. Soc. 122, 4763–4775 (2000).Svelle, S. et al. Conversion of methanol into hydrocarbons over zeolite H-ZSM-5: ethene formation is mechanistically separated from the formation of higher alkenes. J. Am. Chem. Soc. 128, 14770–14771 (2006).Teketel, S., Olsbye, U., Lillerud, K. P., Beato, P. & S., S. Selectivity control through fundamental mechanistic insight in the conversion of methanol to hydrocarbons over zeolites. Micro. Mesopor. Mater. 136, 33–41 (2010).Zhang, M. et al. Methanol conversion on ZSM-22, ZSM-35 and ZSM-5 zeolites: effects of 10-membered ring zeolite structures on methylcyclopentenyl cations and dual cycle mechanism. RSC Adv. 6, 95855–95864 (2016).Sassi, A. et al. Methylbenzene chemistry on zeolite HBeta: multiple insights into methanol-to-olefin catalysis. J. Phys. Chem. B 106, 2294–2303 (2002).Sassi, A., Wildman, M. A. & Haw, J. F. Reactions of butylbenzene isomers on zeolite HBeta: methanol-to-olefins hydrocarbon pool chemistry and secondary reactions of olefins. J. Phys. Chem. B 106, 8768–8773 (2002).Bjørgen, M., Olsbye, U., Petersen, D. & Kolboe, S. The methanol-to-hydrocarbons reaction: insight into the reaction mechanism from [12C]benzene and [13C]methanol coreactions over zeolite H-beta. J. Catal. 221, 1–10 (2004).McCann, D. M. et al. A complete catalytic cycle for supramolecular methanol-to-olefins conversion by linking theory with experiment. Angew. Chem. Int. Ed. 47, 5179–5182 (2008).Arstad, B., Kolboe, S. & Swang, O. Theoretical study of the heptamethylbenzenium ion. intramolecular isomerizations and C2, C3, C4 alkene elimination. J. Phys. Chem. A 109, 8914–8922 (2005).De Wispelaere, K., Hemelsoet, K., Waroquier, M. & Van Speybroeck, V. Complete low-barrier side-chain route for olefin formation during methanol conversion in H-SAPO-34. J. Catal. 305, 76–80 (2013).Wang, C. M., Wang, Y. D. & Xie, Z. K. Verification of the dual cycle mechanism for methanol-to-olefin conversion in HSAPO-34: a methylbenzene-based cycle from DFT calculations. Catal. Sci. Technol. 4, 2631–2638 (2014).Wang, C. M., Wang, Y. D., Liu, H. X., Xie, Z. K. & Liu, Z. P. Theoretical insight into the minor role of paring mechanism in the methanol-to-olefins conversion within HSAPO-34 catalyst. Micro. Mesopor. Mater. 158, 264–271 (2012).Ilias, S. & Bhan, A. The mechanism of aromatic dealkylation in methanol-to-hydrocarbons conversion on H-ZSM-5: What are the aromatic precursors to light olefins? J. Catal. 311, 6–16 (2014).Erichsen, M. W. et al. Conclusive evidence for two unimolecular pathways to zeolite-catalyzed de-alkylation of the heptamethylbenzenium cation. ChemCatChem 7, 4143–4147 (2015).Bhawe, Y. et al. Effect of cage size on the selective conversion of methanol to light olefins. ACS Catal. 2, 2490–2495 (2012).Kang, J. H. et al. Further studies on how the nature of zeolite cavities that are bounded by small pores influences the conversion of methanol to light olefins. ChemPhysChem 19, 412–419 (2018).Martin, N. et al. Nanocrystalline SSZ-39 zeolite as an efficient catalyst for the methanol-to-olefin (MTO) process. Chem. Commun. 52, 6072–6075 (2016).Dusselier, M., Deimund, M. A., Schmidt, J. E. & Davis, M. E. Methanol-to-olefins catalysis with hydrothermally treated zeolite SSZ-39. ACS Catal. 5, 6078–6085 (2015).Yokoi, T., Yoshioka, M., Imai, H. & Tatsumi, T. Diversification of RTH-type zeolite and its catalytic application. Angew. Chem. Int. Ed. 48, 9884–9887 (2009).Ji, Y., Deimund, M. A., Bhawe, Y. & Davis, M. E. Organic-free synthesis of CHA-type zeolite catalysts for the methanol-to-olefins reaction. ACS Catal. 5, 4456–4465 (2015).Liu, M. et al. Differences in Al distribution and acidic properties between RTH-type zeolites synthesized with OSDAs and without OSDAs. Phys. Chem. Chem. Phys. 16, 4155–4164 (2014).Gallego, E. M. et al. “Ab initio” synthesis of zeolites for preestablished catalytic reactions. Science 355, 1051–1054 (2017).Zones, S. I. & Nakagawa, Y. Use of modified zeolites as reagents influencing nucleation in zeolite synthesis. Stud. Surf. Sci. Catal. 97, 45–52 (1995).Li, C., Moliner, M. & Corma, A. Building zeolites from pre-crystallized units: nanoscale architecture. Angew. Chem. Int. Ed. https://doi.org/10.1002/anie.201711422 (2018).Zones, S. I. Zeolite SSZ-13 and its method of preparation. US Patent 4,544,538 (1985).Li, Z., Navarro, M. T., Martínez-Triguero, J., Yu, J. & Corma, A. Synthesis of nano-SSZ-13 and its application in the reaction of methanol to olefins. Catal. Sci. Technol. 6, 5856–5863 (2016).Kumar, M., Luo, H., Román-Leshkov, Y. & Rimer, J. D. SSZ-13 crystallization by particle attachment and deterministic pathways to crystal size control. J. Am. Chem. Soc. 137, 13007–13017 (2015).Martínez-Franco, R., Cantin, A., Moliner, M. & Corma, A. Synthesis of the small pore silicoaluminophosphate STA-6 by using supramolecular self-assembled organic structure directing agents. Chem. Mater. 26, 4346–4353 (2014).Schmidt, J. E., Deimund, M. A., Xie, D. & Davis, M. E. Synthesis of RTH-type zeolites using a diverse library of imidazolium cations. Chem. Mater. 27, 3756–3762 (2015).Moliner, M., Franch, C., Palomares, E., Grill, M. & Corma, A. Cu–SSZ-39, an active and hydrothermally stable catalyst for the selective catalytic reduction of NOx. Chem. Commun. 48, 8264–8266 (2012).Zhao, Y. & Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215–241 (2008).Ditchfield, R., Hehre, W. J. & Pople, J. A. Self-consistent molecular orbital methods. 9. Extended Gaussian-type basis for molecular-orbital studies of organic molecules. J. Chem. Phys. 54, 724–728 (1971).Hehre, W. J., Ditchfield, R. & Pople, J. A. Self-consistent molecular orbital methods. 12. Further extensions of Gaussian-type basis sets for use in molecular-orbital studies of organic-molecules. J. Chem. Phys. 56, 2257–2261 (1972).Frisch, M. J. et al. Gaussian 09, Revision C.01. (Gaussian, Wallingford, 2009).Van Speybroeck, V. et al. First principle chemical kinetics in zeolites: the methanol-to-olefin process as a case study. Chem. Soc. Rev. 43, 7326–7357 (2014)

    Penumbral Rescue by normobaric O = O administration in patients with ischemic stroke and target mismatch proFile (PROOF): Study protocol of a phase IIb trial.

    Get PDF
    Oxygen is essential for cellular energy metabolism. Neurons are particularly vulnerable to hypoxia. Increasing oxygen supply shortly after stroke onset could preserve the ischemic penumbra until revascularization occurs. PROOF investigates the use of normobaric oxygen (NBO) therapy within 6 h of symptom onset/notice for brain-protective bridging until endovascular revascularization of acute intracranial anterior-circulation occlusion. Randomized (1:1), standard treatment-controlled, open-label, blinded endpoint, multicenter adaptive phase IIb trial. Primary outcome is ischemic core growth (mL) from baseline to 24 h (intention-to-treat analysis). Secondary efficacy outcomes include change in NIHSS from baseline to 24 h, mRS at 90 days, cognitive and emotional function, and quality of life. Safety outcomes include mortality, intracranial hemorrhage, and respiratory failure. Exploratory analyses of imaging and blood biomarkers will be conducted. Using an adaptive design with interim analysis at 80 patients per arm, up to 456 participants (228 per arm) would be needed for 80% power (one-sided alpha 0.05) to detect a mean reduction of ischemic core growth by 6.68 mL, assuming 21.4 mL standard deviation. By enrolling endovascular thrombectomy candidates in an early time window, the trial replicates insights from preclinical studies in which NBO showed beneficial effects, namely early initiation of near 100% inspired oxygen during short temporary ischemia. Primary outcome assessment at 24 h on follow-up imaging reduces variability due to withdrawal of care and early clinical confounders such as delayed extubation and aspiration pneumonia. ClinicalTrials.gov: NCT03500939; EudraCT: 2017-001355-31

    Intravenous alteplase for stroke with unknown time of onset guided by advanced imaging: systematic review and meta-analysis of individual patient data

    Get PDF
    Background: Patients who have had a stroke with unknown time of onset have been previously excluded from thrombolysis. We aimed to establish whether intravenous alteplase is safe and effective in such patients when salvageable tissue has been identified with imaging biomarkers. Methods: We did a systematic review and meta-analysis of individual patient data for trials published before Sept 21, 2020. Randomised trials of intravenous alteplase versus standard of care or placebo in adults with stroke with unknown time of onset with perfusion-diffusion MRI, perfusion CT, or MRI with diffusion weighted imaging-fluid attenuated inversion recovery (DWI-FLAIR) mismatch were eligible. The primary outcome was favourable functional outcome (score of 0–1 on the modified Rankin Scale [mRS]) at 90 days indicating no disability using an unconditional mixed-effect logistic-regression model fitted to estimate the treatment effect. Secondary outcomes were mRS shift towards a better functional outcome and independent outcome (mRS 0–2) at 90 days. Safety outcomes included death, severe disability or death (mRS score 4–6), and symptomatic intracranial haemorrhage. This study is registered with PROSPERO, CRD42020166903. Findings: Of 249 identified abstracts, four trials met our eligibility criteria for inclusion: WAKE-UP, EXTEND, THAWS, and ECASS-4. The four trials provided individual patient data for 843 individuals, of whom 429 (51%) were assigned to alteplase and 414 (49%) to placebo or standard care. A favourable outcome occurred in 199 (47%) of 420 patients with alteplase and in 160 (39%) of 409 patients among controls (adjusted odds ratio [OR] 1·49 [95% CI 1·10–2·03]; p=0·011), with low heterogeneity across studies (I2=27%). Alteplase was associated with a significant shift towards better functional outcome (adjusted common OR 1·38 [95% CI 1·05–1·80]; p=0·019), and a higher odds of independent outcome (adjusted OR 1·50 [1·06–2·12]; p=0·022). In the alteplase group, 90 (21%) patients were severely disabled or died (mRS score 4–6), compared with 102 (25%) patients in the control group (adjusted OR 0·76 [0·52–1·11]; p=0·15). 27 (6%) patients died in the alteplase group and 14 (3%) patients died among controls (adjusted OR 2·06 [1·03–4·09]; p=0·040). The prevalence of symptomatic intracranial haemorrhage was higher in the alteplase group than among controls (11 [3%] vs two [<1%], adjusted OR 5·58 [1·22–25·50]; p=0·024). Interpretation: In patients who have had a stroke with unknown time of onset with a DWI-FLAIR or perfusion mismatch, intravenous alteplase resulted in better functional outcome at 90 days than placebo or standard care. A net benefit was observed for all functional outcomes despite an increased risk of symptomatic intracranial haemorrhage. Although there were more deaths with alteplase than placebo, there were fewer cases of severe disability or death. Funding: None

    Status Update and Interim Results from the Asymptomatic Carotid Surgery Trial-2 (ACST-2)

    Get PDF
    Objectives: ACST-2 is currently the largest trial ever conducted to compare carotid artery stenting (CAS) with carotid endarterectomy (CEA) in patients with severe asymptomatic carotid stenosis requiring revascularization. Methods: Patients are entered into ACST-2 when revascularization is felt to be clearly indicated, when CEA and CAS are both possible, but where there is substantial uncertainty as to which is most appropriate. Trial surgeons and interventionalists are expected to use their usual techniques and CE-approved devices. We report baseline characteristics and blinded combined interim results for 30-day mortality and major morbidity for 986 patients in the ongoing trial up to September 2012. Results: A total of 986 patients (687 men, 299 women), mean age 68.7 years (SD ± 8.1) were randomized equally to CEA or CAS. Most (96%) had ipsilateral stenosis of 70-99% (median 80%) with contralateral stenoses of 50-99% in 30% and contralateral occlusion in 8%. Patients were on appropriate medical treatment. For 691 patients undergoing intervention with at least 1-month follow-up and Rankin scoring at 6 months for any stroke, the overall serious cardiovascular event rate of periprocedural (within 30 days) disabling stroke, fatal myocardial infarction, and death at 30 days was 1.0%. Conclusions: Early ACST-2 results suggest contemporary carotid intervention for asymptomatic stenosis has a low risk of serious morbidity and mortality, on par with other recent trials. The trial continues to recruit, to monitor periprocedural events and all types of stroke, aiming to randomize up to 5,000 patients to determine any differential outcomes between interventions. Clinical trial: ISRCTN21144362. © 2013 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved
    corecore