2,844 research outputs found
Solar electric propulsion for Mars transport vehicles
Solar electric propulsion (SEP) is an alternative to chemical and nuclear powered propulsion systems for both piloted and unpiloted Mars transport vehicles. Photovoltaic solar cell and array technologies were evaluated as components of SEP power systems. Of the systems considered, the SEP power system composed of multijunction solar cells in an ENTECH domed fresnel concentrator array had the least array mass and area. Trip times to Mars optimized for minimum propellant mass were calculated. Additionally, a preliminary vehicle concept was designed
Production and characterization of monoclonal antibodies raised against recombinant human granzymes A and B and showing cross reactions with the natural proteins
The human serine proteases granzymes A and B are expressed in cytotoplasmic granules of activated cytotoxic T lymphocytes and natural killer cells. Recombinant granzyme A and granzyme B proteins were produced in bacteria, purified and then used to raise specific mouse monoclonal antibodies. Seven monoclonal antibodies (mAb) were raised against granzyme A, which all recognized the same or overlapping epitopes. They reacted specifically in an immunoblot of interleukin-2 (IL-2) stimulated PBMNC with a disulfide-linked homodimer of 43 kDa consisting of 28 kDa subunits. Seven mAb against granzyme B were obtained, which could be divided into two groups, each recognizing a different epitope. On an immunoblot, all mAb reacted with a monomer of 33 kDa protein. By immunohistochemistry, these mAb could be used to detect granzymes A and B expression in activated CTL and NK cells. The availability of these mAb may facilitate studies on the role of human cytotoxic cells in various immune reactions and may contribute to a better understanding of the role of granzmes A and B in the cytotoxic response in vivo
Outer jet X-ray and radio emission in R Aquarii: 1999.8 to 2004.0
Chandra and VLA observations of the symbiotic star R Aqr in 2004 reveal
significant changes over the three to four year interval between these
observations and previous observations taken with the VLA in 1999 and with
Chandra in 2000. This paper reports on the evolution of the outer thermal X-ray
lobe-jets and radio jets. The emission from the outer X-ray lobe-jets lies
farther away from the central binary than the outer radio jets, and comes from
material interpreted as being shock heated to ~10^6 K, a likely result of
collision between high speed material ejected from the central binary and
regions of enhanced gas density. Between 2000 and 2004, the Northeast (NE)
outer X-ray lobe-jet moved out away from the central binary, with an apparent
projected motion of ~580 km s^-1. The Southwest (SW) outer X-ray lobe-jet
almost disappeared between 2000 and 2004, presumably due to adiabatic expansion
and cooling. The NE radio bright spot also moved away from the central binary
between 2000 and 2004, but with a smaller apparent velocity than of the NE
X-ray bright spot. The SW outer lobe-jet was not detected in the radio in
either 1999 or 2004. The density and mass of the X-ray emitting material is
estimated. Cooling times, shock speeds, pressure and confinement are discussed.Comment: 23 pages, 8 figure
Time walkers and spatial dynamics of ageing information
The distribution of information is essential for living system's ability to
coordinate and adapt. Random walkers are often used to model this distribution
process and, in doing so, one effectively assumes that information maintains
its relevance over time. But the value of information in social and biological
systems often decay and must continuously be updated. To capture the spatial
dynamics of ageing information, we introduce time walkers. A time walker moves
like a random walker, but interacts with traces left by other walkers, some
representing older information, some newer. The traces forms a navigable
information landscape. We quantify the dynamical properties of time walkers
moving on a two-dimensional lattice and the quality of the information
landscape generated by their movements. We visualise the self-similar landscape
as a river network, and show that searching in this landscape is superior to
random searching and scales as the length of loop-erased random walks
TNF-mediated damage to glomerular endothelium is an important determinant of acute kidney injury in sepsis
Severe sepsis is often accompanied by acute kidney injury (AKI) and albuminuria. Here we studied whether the AKI and albuminuria associated with lipopolysaccharide (LPS) treatment in mice reflects impairment of the glomerular endothelium with its associated endothelial surface layer. LPS treatment decreased the abundance of endothelial surface layer heparan sulfate proteoglycans and sialic acid, and led to albuminuria likely reflecting altered glomerular filtration perm-selectivity. LPS treatment decreased the glomerular filtration rate (GFR), while also causing significant ultrastructural alterations in the glomerular endothelium. The density of glomerular endothelial cell fenestrae was 5-fold lower whereas the average fenestrae diameter was 3-fold higher in LPS-treated than in control mice. The effects of LPS on the glomerular endothelial surface layer, endothelial cell fenestrae, GFR, and albuminuria were diminished in TNF receptor 1 (TNFR1) knockout mice, suggesting that these LPS effects are mediated by TNF-α activation of TNFR1. Indeed, intravenous administration of TNF decreased GFR and led to loss of glomerular endothelial cell fenestrae, increased fenestrae diameter, and damage to the glomerular endothelial surface layer. LPS treatment decreased kidney expression of vascular endothelial growth factor (VEGF). Thus, our findings confirm the important role of glomerular endothelial injury, possibly by a decreased VEGF level, in the development and progression of AKI and albuminuria in the LPS model of sepsis in the mouse
Hadamard states from null infinity
Free field theories on a four dimensional, globally hyperbolic spacetime,
whose dynamics is ruled by a Green hyperbolic partial differential operator,
can be quantized following the algebraic approach. It consists of a two-step
procedure: In the first part one identifies the observables of the underlying
physical system collecting them in a *-algebra which encodes their relational
and structural properties. In the second step one must identify a quantum
state, that is a positive, normalized linear functional on the *-algebra out of
which one recovers the interpretation proper of quantum mechanical theories via
the so-called Gelfand-Naimark-Segal theorem. In between the plethora of
possible states, only few of them are considered physically acceptable and they
are all characterized by the so-called Hadamard condition, a constraint on the
singular structure of the associated two-point function. Goal of this paper is
to outline a construction scheme for these states which can be applied whenever
the underlying background possesses a null (conformal) boundary. We discuss in
particular the examples of a real, massless conformally coupled scalar field
and of linearized gravity on a globally hyperbolic and asymptotically flat
spacetime.Comment: 23 pages, submitted to the Proceedings of the conference "Quantum
Mathematical Physics", held in Regensburg from the 29th of September to the
02nd of October 201
Cosmological perturbation theory and quantum gravity
It is shown how cosmological perturbation theory arises from a fully quantized perturbative theory of quantum gravity. Central for the derivation is a non-perturbative concept of gauge-invariant local observables by means of which perturbative invariant expressions of arbitrary order are generated. In particular, in the linearised theory, first order gauge-invariant observables familiar from cosmological perturbation theory are recovered. Explicit expressions of second order quantities are presented as well
Hubble Space Telescope Weak-lensing Study of the Galaxy Cluster XMMU J2235.3-2557 at z=1.4: A Surprisingly Massive Galaxy Cluster when the Universe is One-third of its Current Age
We present a weak-lensing analysis of the z=1.4 galaxy cluster XMMU
J2235.3-2557, based on deep Advanced Camera for Surveys images. Despite the
observational challenge set by the high redshift of the lens, we detect a
substantial lensing signal at the >~ 8 sigma level. This clear detection is
enabled in part by the high mass of the cluster, which is verified by our both
parametric and non-parametric estimation of the cluster mass. Assuming that the
cluster follows a Navarro-Frenk-White mass profile, we estimate that the
projected mass of the cluster within r=1 Mpc is (8.5+-1.7) x 10^14 solar mass,
where the error bar includes the statistical uncertainty of the shear profile,
the effect of possible interloping background structures, the scatter in
concentration parameter, and the error in our estimation of the mean redshift
of the background galaxies. The high X-ray temperature 8.6_{-1.2}^{+1.3} keV of
the cluster recently measured with Chandra is consistent with this high lensing
mass. When we adopt the 1-sigma lower limit as a mass threshold and use the
cosmological parameters favored by the Wilkinson Microwave Anisotropy Probe
5-year (WMAP5) result, the expected number of similarly massive clusters at z
>~ 1.4 in the 11 square degree survey is N ~ 0.005. Therefore, the discovery of
the cluster within the survey volume is a rare event with a probability < 1%,
and may open new scenarios in our current understanding of cluster formation
within the standard cosmological model.Comment: Accepted to ApJ for publication. 40 pages and 14 figure
Local minimal energy landscapes in river networks
The existence and stability of the universality class associated to local
minimal energy landscapes is investigated. Using extensive numerical
simulations, we first study the dependence on a parameter of a partial
differential equation which was proposed to describe the evolution of a rugged
landscape toward a local minimum of the dissipated energy. We then compare the
results with those obtained by an evolution scheme based on a variational
principle (the optimal channel networks). It is found that both models yield
qualitatively similar river patterns and similar dependence on . The
aggregation mechanism is however strongly dependent on the value of . A
careful analysis suggests that scaling behaviors may weakly depend both on
and on initial condition, but in all cases it is within observational
data predictions. Consequences of our resultsComment: 12 pages, 13 figures, revtex+epsfig style, to appear in Phys. Rev. E
(Nov. 2000
Cellular Models for River Networks
A cellular model introduced for the evolution of the fluvial landscape is
revisited using extensive numerical and scaling analyses. The basic network
shapes and their recurrence especially in the aggregation structure are then
addressed. The roles of boundary and initial conditions are carefully analyzed
as well as the key effect of quenched disorder embedded in random pinning of
the landscape surface. It is found that the above features strongly affect the
scaling behavior of key morphological quantities. In particular, we conclude
that randomly pinned regions (whose structural disorder bears much physical
meaning mimicking uneven landscape-forming rainfall events, geological
diversity or heterogeneity in surficial properties like vegetation, soil cover
or type) play a key role for the robust emergence of aggregation patterns
bearing much resemblance to real river networks.Comment: 7 pages, revtex style, 14 figure
- …
