90,229 research outputs found
Highly-efficient horn/reflector antenna
Antenna has beam efficiency of 96 percent. Configuration is compact and relatively inexpensive
Bifurcation analysis of frequency locking in a semiconductor laser with phase-conjugate feedback
We present a detailed study of the external-cavity modes (ECMs) of a semiconductor laser with phase-conjugate feedback. Mathematically, lasers with feedback are modeled by delay differential equations (DDEs) with an infinite-dimensional phase space. We employ new numerical bifurcation tools for DDEs to continue steady states and periodic orbits, irrespective of their stability. In this way, we show that the periodic orbits corresponding to the ECMs are connected to the steady state solution associated with the locking range of the laser. We also identify symmetric and nonsymmetric homoclinic orbits and hysteresis in the system
Computing unstable manifolds in delay differential equations
We present the first algorithm for computing unstable manifolds of saddle-type periodic orbits with one unstable Floquet multiplier in systems of delay differential equations (DDEs). Specifically, we grow the one-dimensional unstable manifold Wu(q) of an associated saddle fixed point q of a Poincare map defined by a suitable Poincar\'e section. Starting close to q along the linear approximation given by the associated eigenfunction, our algorithm grows the manifold as a sequence of points, where the distance between points is governed by the curvature of the one-dimensional intersection curve of Wu(q) with the Poincare section. Our algorithm makes it possible to study global bifurcations in DDEs. We illustrate this with the break-up of an invariant torus and a subsequent boundary crisis to chaos in a DDE model of a semiconductor laser with phase-conjugate feedback. See also the mpeg movie of growing unstable manifolds
Irrigation demand modelling using the UKCP09 weather generator: lessons learned
The determination of irrigation demand is typically based on crop modelling using a long historic record of local daily weather data. However, there are rarely adequate weather station records near to given sites; often any local records cover a limited number of years, are incomplete, costly or are of poor quality. This paper examines whether version 1 of the UKCP09 weather generator can provide a simpler and effective method of calculating irrigation demand with sufficient accuracy for regulatory and design purposes. The irrigation demands at seven sites distributed around England were modelled using the UKCP09 baseline climatology and compared with results modelled using daily observed weather records. For the design dry year used for irrigation planning, the weather generator replicated the observed conditions with reasonable accuracy. The weather generator was however less successful at replicating extreme dry years. These results are encouraging but also provide a note of caution for the use of these generated datasets for studying current irrigation demand and by implication for modelling future needs under climate change. The study also demonstrated a simple sub-sampling approach for reducing the processing demands if using the dataset in more complex models, though this would not remove any underlying error
- …
