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Abstract

We present a detailed study of a route to chaos via quasiperiodicity on a torus
in a semiconductor laser with phase-conjugate feedback. Highlighting the use of
new tools that go far beyond mere simulation, we compute bifurcation diagrams
and unstable manifolds of saddle periodic orbits. In this way, we show how a torus
breaks up with a final sudden onset of chaos in a crisis bifurcation. We also identify
regions of bistability between periodic solutions and other attractors in the system.
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1 Introduction

Semiconductor lasers with delay [1,2] are technologically important examples
of physical systems described by delay differential equations (DDEs) [3–6].
Such lasers are used in many physical applications, including CD players,
laser printers and optical communication networks. Delay generally arises by
optical reflection on an external reflector such as a CD or an optical fibre,
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so that the laser ‘sees’ its past output after a fixed time delay. Examples
of lasers with delayed feedback include the case of conventional optical feed-
back (COF) from an external mirror [7,8], mutually coupled lasers with delay
[9], lasers with opto-electronic feedback [10] and lasers with phase conjugate

feedback (PCF) from an external phase conjugating mirror (PCM) [11–16]. In
many applications chaotic output is unwanted, and expensive optical isolators
need to be used. However, recently there has been considerable interest in
the controlled production of chaotic optical output for use in chaotic commu-
nication schemes [17,18]. In general, an understanding of the dynamics of a
semiconductor laser with feedback can lead to new uses and better control of
lasers. Considering the vast amount of lasers used in applications, this is of a
considerable economical interest.

Our object of study is a semiconductor laser with PCF, schematically shown
in Figure 1. This form of feedback is interesting as it produces a reflected
wave that is wave-front inverted, with the angle of incidence of the wave
being equal to the angle of reflection. Furthermore, any distortions in the
external cavity are undone over a round-trip, thus the amplified beam is less
spread and the energy more focused than with COF [11]. Also, compared to
COF, where there is extreme sensitivity to the positioning of the mirror, PCF
lasers are ‘self-aligning’; this is an advantage when stable output is desired.
Physical applications of PCF include mode locking [12] and phase locking,
where PCF has been shown to reduce the laser noise considerably [13–15].
The PCF laser has been shown to exhibit a wealth of dynamics, including
stable periodic operation, quasiperiodic motion and chaos [15,16]. Transitions
to chaos were recently studied by simulation, with a combination of bifurcation
diagrams and phase-plots [16]. However, a question remains, ‘What are the
global dynamics underlying these transitions?’. To answer this question, we
need to use numerical tools that go beyond simulation.

In this paper, we use new and advanced numerical tools for DDEs to investi-
gate the PCF laser. We concentrate on a transition involving the break-up of a
torus and show in Section 6 that a crisis bifurcation is responsible for a sud-
den transition to chaos: a regular small attractor (a hose-like torus) increases
dramatically in size and becomes a large chaotic attractor. Our study is made
possible by, firstly, the package DDE-BIFTOOL [19–21], which allows one to
perform continuation and bifurcation analysis of DDEs, much like AUTO [22]
does for ordinary differential equations (ODEs). Our second main tool is to
compute one-dimensional (1D) unstable manifolds of saddle periodic orbits
in systems of DDEs [23]. These unstable manifolds are important for under-
standing the global dynamics of dynamical systems. These tools are described
in more detail in Section 3.

A further goal of this paper is to showcase these advanced numerical tech-
niques. Our approach not only applies to the PCF laser, but can be used in
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Fig. 1. A semiconductor laser with phase-conjugate feedback.

others areas of science and engineering in which DDEs are being increasingly
used to model physical phenomena. These include areas as diverse as biology
[24], neural networks [25] and control theory [26]. Note that advanced tools
have not been widely used, first examples of the use of DDE-BIFTOOL include
the studies of a COF laser in Refs. [27–30], of a vertical-cavity surface emitting
laser in Ref. [31], and of a PCF laser here and in Refs. [32,33]. Furthermore, we
extended the capabilities of DDE-BIFTOOL to deal with the specific proper-
ties of the equations under consideration. Manifold computations for periodic
orbits of DDEs are presented here for the first time.

The paper is organised as follows. In Section 2 we introduce rate equations
for a semiconductor laser with PCF; we also give a short introduction to the
mathematics of DDEs. In Section 3 we introduce the advanced numerical tools
we use. In Section 4 we show bifurcation diagrams obtained by simulation and
by continuation to provide an outline of the dynamics involved in a route to
chaos in the system. This leads to the discovery of regions of bistability which
we detail in Section 5. In Section 6 we compute unstable manifolds of locked
periodic orbits and show that the mechanism behind the transition to chaos
is due to the break-up of a torus culminating in a crisis bifurcation. Finally,
we draw conclusions and discuss future work in Section 7.

2 Semiconductor Laser with Phase-Conjugate Feedback

A single-mode semiconductor laser with PCF can be described by the three-
dimensional delay differential system

dE

dt
=

1

2

[

−iαGN(N(t)−Nsol) +

(

G(t)−
1

τp

)]

E(t)

+κE∗(t− τ) exp[2iδ(t− τ/2) + iφPCM]

(1)

dN

dt
=
I

q
−
N(t)

τe

−G(t) |E(t)|2

3



for the evolution of the slowly varying complex electric field E(t) and the
population inversion N(t) [15,16]. In system (1), nonlinear gain is included as
G(t) = GN(N(t) − N0)(1 − εP (t)), where ε = 3.57 × 10−8 is the nonlinear
gain coefficient and P (t) = |E(t)|2 is the intensity. Parameter values are set
to realistic values corresponding to a Ga-Al-As semiconductor laser [15,16],
namely, the line-width enhancement factor α = 3, the optical gain GN =
1190 s−1, the photon lifetime τp = 1.4 ps, the injection current I = 65.1mA,
the magnitude of the electron charge q = 1.6 × 10−19C, the electron lifetime
τe = 2ns, and the transparency electron number N0 = 1.64 × 108. Further,
Nsol = N0 + 1 / (GNτp). The constant phase shift φPCM at the PCM and the
detuning parameter δ were both set to zero, as is common in the field [15,16].
Therefore, the feedback term in system (1) reduces to κE∗(t− τ) and involves
the complex conjugated electric field E∗, the feedback rate κ and the external
cavity round-trip time τ . We fix τ at the realistic value τ = 2/3 ns and
consider the dimensionless bifurcation parameter κτ .

System (1) has Z2-symmetry under the transformation E → −E, where the
symmetry group is Z2 = {1,−1}. This corresponds to a rotation over π of
the complex E-plane, so that any attractor (or other invariant set) is either
symmetric, or has a symmetric counterpart. This symmetry allows the possi-
bility of symmetry-breaking and symmetry-restoring bifurcations [16,34], and
also implies restrictions on the types of bifurcations of periodic orbits. For
example, symmetric orbits cannot undergo period-doubling bifurcations [35].
The numerical consequences of this symmetry are described in Section 3.

2.1 Delay Differential Equations

System (1) is a system of DDEs. We now introduce some notation and recall
some concepts of DDEs, where we follow [3–6,23]. The phase space of a DDE
is infinite-dimensional. A state q of the system is a continuous function on the
time interval [−τ, 0] with values in (E,N)-space. In other words

q ≡ { (E(t), N(t)) | t ∈ [−τ, 0] }.

We call q(0) the head-point of q and {q(t) | t ∈ [−τ, 0)} its history. A state
q, that is, knowledge of (E,N) over the entire interval [−τ, 0], uniquely de-
termines the dynamics of system (1) for t ∈ [−τ,∞). In other words, q is an
initial condition. While (E,N)-space is not the phase space of system (1), it is
nevertheless helpful to show trajectories projected onto (E,N)-space, which
is also called the physical space.

An equilibrium of system (1) is a solution (E(t), N(t)) = (E0, N0) for all
t ∈ [−τ,∞) and fixed (E0, N0) ∈ R3, so that the right hand side of sys-
tem (1) is zero. The stability of an equilibrium is given by the eigenvalues
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of the linearization of system (1) around (E0, N0). There are infinitely many
eigenvalues, but only finitely many with positive real part. Consequently, there
are only finitely many unstable eigenfunctions.

The main object of study in this paper are periodic solutions of system (1). A
periodic solution is a solution along which any state q is mapped to itself after
integration of system (1) over time T, called the period. The stability of a
periodic solution is given by its Floquet multipliers, which are the eigenvalues
of the linearization of system (1) along the periodic orbit. Again, there are
infinitely many eigenvalues, but only finitely many outside the unit circle, i.e.
again there are only finitely many unstable eigenfunctions.

Near a periodic orbit, one can define the Poincaré map P which maps a state
q with head-point in a suitable section Σ to P (q), which is again a state with
head-point in Σ. In other words, for q(0) ∈ Σ then P (q(0)) ∈ Σ, where P (q)
is another state. Therefore, P is an infinite-dimensional map on the space of
states with head-points in Σ.

The unstable manifold W u(q), of the saddle periodic state q, is the set of all
states p that can be iterated backwards under P and reach q in the limit. That
is, Pm(p) → q as m → −∞. We remark that it is generally not possible to
integrate a DDE backwards in time. However, for W u(q) it is possible, which
is part of its definition; see Refs. [4,5]. In the case of one Floquet multiplier
outside the unit circle, the unstable eigenfunction of q is unique and, in projec-
tion onto (E,N)-space, the 1D linear eigenspace Eu(q) forms a one-parameter
family of directions along the state q. The trace Wu(q) ∩ Σ is a smooth 1D
curve (except possibly at isolated points due to projection) that reveals as
much about the dynamics as a 1D unstable manifold of a saddle point of a
diffeomorphism in R2; see Ref. [23] for details.

3 Advanced Numerical Tools for DDEs

The basic operation one needs to perform is numerical integration of sys-
tem (1). In order to integrate this DDE, we discretize the state q on the time
interval [t − τ, t] into M subintervals, leading to an integration time-step of
τ/M . In our simulations we use an Adams-Bashforth fourth-order multistep
method [23], which requires knowing values up to and including q(−τ − 3 t

M
)

for a single integration step; we set M = 2500. To start an integration, we
can use either a random initial condition, or initial conditions obtained from
a previous simulation or via continuation. Furthermore, in our study we make
use of recent developments in the theory and numerics of DDEs.
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3.1 Continuation

We use the continuation package DDE-BIFTOOL [19–21], consisting of Mat-
lab routines, for the bifurcation analysis of steady states and periodic solutions.
This not only allows us to find and follow stable solutions (those one also finds
by simulation), but also unstable ones. Furthermore, DDE-BIFTOOL detects
local bifurcations. For equilibria, these bifurcations are: a saddle-node bifur-
cation when a real eigenvalue changes sign and a Hopf bifurcation when a
complex pair of eigenvalues cross the imaginary axis. For periodic solutions,
these bifurcations are: a saddle-node bifurcation of limit cycles when a real
Floquet multiplier crosses the unit circle at +1, a period-doubling bifurca-
tion when a real Floquet multiplier crosses the unit circle at −1 and a torus
(Neimark-Sacker) bifurcation when a pair of complex Floquet multipliers cross
the unit circle. It is possible to compute bifurcating branches of periodic orbits
from detected bifurcation points.

Because of the Z2-symmetry, it is possible that a Floquet multiplier cross-
ing +1 corresponds to a symmetry-breaking bifurcation. In order to deal
with symmetry-breaking bifurcations, we extended DDE-BIFTOOL to allow
branch switching at symmetry-breaking bifurcations as well. There is now a
routine to compute the linearised direction corresponding to this multiplier.
Specifically, it is found by computing the eigenvalues of the discretized mon-
odromy operator. The eigenfunction which is thus found is defined on the
delay interval [−τ, 0] and is further integrated under the linearized equations
to obtain a profile on the complete period interval [0,T]. The eigenfunction
can then be used as a perturbation in the direction of the emanating branch
to provide a guess of an initial solution on the branch. It is also used in a
special steplength condition to prevent convergence of the computation back
to the original branch. During these computations, the continuation parame-
ter is also corrected. As such, the branch switching automatically detects the
direction of the emanating branch (to higher or lower values of the continua-
tion parameter). After a first point is found, the branch can then be continued
further.

For computing periodic solutions and their stability, DDE-BIFTOOL uses
orthogonal collocation based on a piecewise polynomial representation on
adapted meshes, a technique also used in the well-known continuation pack-
age AUTO [22]. This technique computes a periodic solution using a discrete
periodic representation satisfying the differential equation at a given, finite
set of points. In our tests we used polynomials of degrees 3 and 4 on meshes
with 150 subintervals (200 for the period-doubled branches). Note that simi-
lar computational accuracy can only be expected on a period-doubled branch
(compared to the original branch) when the mesh size is doubled. The ac-
curacy of the obtained solutions was checked by comparing results on finer
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meshes. The accuracy of the trivial Floquet multiplier, equal to +1 and cor-
responding to a phase shift along the periodic orbit, was always checked to be
below 0.001 over the computed branches.

3.2 1D Unstable Manifolds

Our second main tool is a new technique for computing 1D unstable manifolds
of saddle periodic orbits. Specifically we compute the 1D unstable manifold
W u(q) of an associated fixed point q of a suitable Poincaré map defined on a
fixed section Σ. This allows us, for the first time in DDEs, to compute certain
invariant objects, for example, an underlying torus on which the dynamics is
attracted to a stable periodic orbit. Unstable manifolds are of great impor-
tance in understanding the global dynamics of a system. However, they cannot
be found analytically and therefore, need to be computed by numerical meth-
ods. Our method generalizes a well established algorithm for computing 1D
unstable manifolds in ODEs [36]. It grows the unstable manifold such that
the headpoints in Σ are a distance ∆k apart. The distance ∆k is constantly
adapted according to the curvature of W u(q) ∩ Σ, thus providing a best pos-
sible numerical approximation given prespecified accuracy parameters. Since
each intersection point of the unstable manifold in Σ has an associated history
of length τ , the projection of the unstable manifold into the physical (E,N)-
space forms a very complicated object. However, the trace (W u(q)∩Σ) of the
1D unstable manifold in Σ is a smooth 1D curve (with the exception of some
points, where smoothness may be lost due to the projection).

For a detailed explanation of this method and the associated accuracy param-
eters see Ref. [23]. For the computations in this paper, we set a lower bound
on ∆k of ∆min = 1.0, where the range of the E-plane is of order 102. In the no-
tation of [23], other accuracy parameters controlling the angle αk between the
lines through three consecutive points on the manifold and the local interpo-
lation error ∆αk were set to αmin = 0.2, αmax = 0.3, and (∆α)min = 1.0×10−2,
(∆α)max = 1.0×10−1. The parameter ε which reduces the number of bisection
steps during computation was set to ε = 0.2 and the initial distance δ along
W u(q) was chosen in [0.001, 0.04]. If ∆k fell below 5.0 × 10−2 we detected
convergence of the manifold to a stable periodic solution.
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4 The Bifurcation Diagram

The general picture of the dynamics of the PCF laser is that, as κτ is changed,
the laser produces stable periodic output interspersed with ‘bubbles’ of more
complicated dynamics, which for the most part are chaotic [15,16]. We consider
in detail a transition to chaos at the beginning of the ‘second bubble’, in the
range of κτ ∈ [2.300, 2.800]. This transition is outlined in Figure 2, which
shows two bifurcation diagrams, one obtained by simulation [Fig. 2(a)] and
one by continuation [Fig. 2(b)].

4.1 Simulation

To obtain Figure 2(a), for each value of κτ we integrated system (1) starting
with an initial condition from the attractor for the previous value of κτ and let
transients die away. Then we plotted the normalised value of the inversion N̂ =
(N/Nsol − 1)× 103 whenever the intensity P = |E|2 crossed its average value
in the increasing direction. This section was chosen to ensure intersections
of the orbit for distinct values of the inversion N [16]. In Fig. 2(a), a small
number of points correspond to a periodic solution. A large number of points
correspond to quasiperiodic or chaotic dynamics.

Figure 3 shows the associated representative phase portraits, obtained by sim-
ulation, of the dynamics corresponding to Figure 2(a), shown in projection
onto (E,N)-space (top) and the E-plane (middle). We also show associated
intersections of the orbits with a plane Σ (bottom). Throughout this paper,
we fix the plane

Σ ≡ { (E,N) | N = 7.620× 108 }.

The value N = 7.620× 108 was chosen because it is a good approximation to
the average value of N for all κτ in our region of interest, ensuring that all
attractors intersect Σ over the entire range of κτ considered. We remark that
the exact choice of Σ is not important, as long as orbits intersect transversally
at least locally near the relevant periodic orbits.

Figures 2(a) and 3 indicate the following bifurcation scenario of symmetric
attractors. The periodic solution at κτ = 2.300 is destabilised in a torus bi-
furcation T at κτ ≈ 2.307. The ensuing dynamics is quasiperiodic and takes
place on an attracting torus, shown in Figure 3(b). At κτ ≈ 2.441 the dynam-
ics on the torus becomes locked to a stable periodic solution in a saddle-node
bifurcation of limit cycles SL. This stable orbit can be seen in Figure 3(c) as a
period-five solution, and it is responsible for the five branches in Figure 2(a).
This stable solution itself undergoes a torus bifurcation T at κτ ≈ 2.556, re-
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Fig. 2. Bifurcation diagram obtained by simulation (a), and by continuation with
DDE-BIFTOOL (b). The consecutive arrows correspond to the phase portraits
shown in Fig. 3(a)–(e).

sulting in quasiperiodic modulations of the laser output. The associated new
torus is essentially a ‘hose-like’ object wrapped around the remainder of the
initial torus; see Figure 3(d) where we see the torus as a thicker version of the
period-five locked solution [Fig. 3(c)]. It is further confirmed by close inspec-
tion of the attractor in Σ that there are indeed invariant circles located around
the previously locked solution. This new torus is destroyed at κτ ≈ 2.570 and
the dynamics becomes chaotic. By comparing simulations for increasing and
decreasing κτ , we found that there is no hysteresis in this transition.

A similar route to chaos has been observed, by simulation, in a semiconduc-
tor laser with COF [8]. However, no explanation was given as to why there
was a sudden transition to a large chaotic attractor. Therefore, an immediate
question is: What is the mechanism involved in the sudden transition from the
attracting torus to a much larger chaotic attractor? We answer this question
in Section 6, where we identify this transition to chaos as a crisis bifurca-
tion. This requires the new technique of computing 1D unstable manifolds of
system (1).
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Fig. 3. Phase portraits shown in projection onto (E,N)-space (top) and
onto the E-plane (middle); along with associated intersections with the plane
Σ ≡ {N = 7.620 × 108} shown in projection onto the E-plane (bottom). From
(a) to (e) κτ takes the values 2.300, 2.400, 2.500, 2.562, and 2.700.

4.2 Continuation

Figure 2(b) was obtained with DDE-BIFTOOL by starting a continuation
from the stable locked periodic solution on the torus. Plotted is the period T,
or T/2 for period-doubled solutions, against κτ . We choose to plot T as is
often done in continuation studies to ensure a smooth solution branch as κτ
is varied. Attracting solutions are drawn as thick curves, while unstable solu-
tions are thin. By studying the Floquet multipliers of the system we are able
to identify the bifurcations involved, namely, saddle-node bifurcations of limit
cycles SL, period-doubling bifurcations PD and torus bifurcations T . Due to
the underlying symmetry of system (1) we also find symmetry-breaking bi-
furcations SB of a symmetric periodic orbit. Here a real Floquet multiplier
passes through the unit circle at +1. As opposed to a saddle-node bifurcation
of limit cycles, this leads to the creation of two non-symmetric periodic orbits.
Symmetry-breaking bifurcations can be distinguished from saddle-node bifur-
cations of limit cycles by looking at where they appear on branches. Using
the new functionality of DDE-BIFTOOL described in Section 3, we switched
onto and computed the emanating branches of non-symmetric periodic solu-
tions. Figure 2(b) shows an oval branch S1 of symmetric periodic solutions
and two branches N1 and N2 of non-symmetric periodic solutions. We will
refer to S1 as having a lower and an upper part, bounded by the saddle-node
bifurcations of limit cycles SL at the maximum and minimum values of κτ .
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The main stable solution, indicated by a thick line, lies on the upper part
of S1. Analysis of the Floquet multipliers shows that this stable solution is
born at SL at κτ ≈ 2.441, marking the onset of locking. It destabilises at
κτ ≈ 2.556 in the torus bifurcation T . This agrees with the simulation in
Figure 2(a). The ensuing unstable solution exists until κτ ≈ 2.784, where
it ‘collides’ with the lower part of S1 and both solutions are lost at SL.
Two additional bifurcations of unstable solutions also exist on S1. They are
symmetry-breaking bifurcations at the points denoted by SB, which are in
fact connected by a branch of non-symmetric solutions N1.

By continuing the branch N1 emanating from the point SB on the lower
part of S1 at κτ ≈ 2.532, we detect a period-doubling bifurcation PD. This
leads to a period-doubled bifurcating branch N3 (not shown in Figure 2(b);
see Figure 10). We then detect a saddle-node bifurcation of limit cycles SL,
before a second period-doubling bifurcation PD leading to the branch N2.
At κτ ≈ 2.543 a torus bifurcation T leads to a stable solution on branch N1,
indicated by the thick curve. This stable solution is destabilised at a saddle-
node bifurcation of limit cycles SL at κτ ≈ 2.530. The unstable branch then
passes two period-doubling bifurcations PD. These are in fact connected via
a branch of period-doubled unstable solutions (not shown). Finally, symmetry
is restored in the symmetry-breaking bifurcation SB on the upper part of S1.

Continuing the period-doubled branch N2, we follow an unstable solution
and rapidly detect a torus bifurcation T at κτ ≈ 2.5661, this leads to another
stable solution. This stable solution is almost immediately destabilised in a
period-doubling bifurcation PD at κτ ≈ 2.5675. This small region of stability
is invisible on the scale of Figure 2(b), but it is enlarged in Section 5 below.
Through further continuation of branch N2, we detected a saddle-node bifur-
cation and a period-doubling bifurcation before the branch leaves the window
of Figure 2(b).

By following bifurcating branches of unstable solutions, we have found val-
ues of κτ for which there exist regions of bistability and multiple unstable
solutions. Figure 4 shows an example of such solutions obtained by taking a
vertical slice of Figure 2(b), through the central non-symmetric branch N1,
where we observe different stable and unstable solutions for κτ = 2.542; see
also Figure 5(a) below. Plotted are two symmetric orbits on branch S1, one
stable and one unstable, as well as three non-symmetric orbits on branch N1,
one stable and two unstable. If symmetric counterparts of the non-symmetric
orbits are included, there are eight coexisting periodic solutions, three of which
are attractors and five of which are of saddle-type.

11
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Fig. 4. Periodic orbits shown in projection onto (E,N)-space (top) and onto the
E-plane (bottom) for κτ = 2.542. Showing, the symmetric unstable orbit on the
lower part of S1 (a), the symmetric stable orbit on the upper part of S1 (b), the
non-symmetric unstable orbit on the lower part of N1 (c), the non-symmetric stable
orbit on the middle part of N1 (d), and the non-symmetric unstable orbit on the
upper part of N1 (e).

5 Windows of Bistability

We now investigate in detail the two regions of bistability that we identified in
Figure 2(b). This bistability is between a symmetric pair of periodic solutions
on N1 and the main periodic solution on S1, and between a symmetric pair
of periodic solutions on N2 and the ‘hose-like’ torus shown in Fig. 3(d). Both
of the symmetric pairs of periodic solutions have small basins of attraction
and, therefore, would be extremely difficult to observe in simulations without
using initial conditions obtained by continuation. We remark that there is no
hysteresis associated with these stable solutions when one follows the main
attractor as in Figure 2(a). This is because the windows of stability are con-
nected to S1 via unstable branches, so that, scanning back and forth, in the
bifurcation diagram, the dynamics is always attracted to the main attractor.

The first region of stability on N1 is illustrated in Figures 5(a) and (b).
Continuation shows that a stable periodic orbit is born at κτ ≈ 2.530 in a
saddle-node bifurcation of limit cycles SL. It exists for κτ ∈ [2.530, 2.543].
By starting from the attracting periodic solution found with DDE-BIFTOOL
[Fig. 5(a)], we can compute a bifurcation diagram by simulation to see what
happens to this solution as we increase and decrease κτ in small steps. This
results in the bifurcation diagram of Figure 5(b). As found by continuation, at
κτ ≈ 2.543, the periodic orbit undergoes a torus bifurcation T . The dynamics
then locks to a periodic solution. This locked solution seemingly undergoes
a period-doubling cascade to a small region of chaos. After this, the solution
jumps to the main attractor of system (1), in this case the stable periodic
solution on S1. Notice that Figure 5(a) contains ten branches due to the
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Fig. 5. Bifurcation diagrams near the stable region of branch N1, obtained by
continuation (a) and by simulation (b), and near the stable region of branch N2,
again obtained by continuation (c) and by simulation (d).

non-symmetric nature of the solution, the periodic orbit is still of period five.

The region of stability on N2 is illustrated in Figures 5(c) and (d). Again,
by starting from the attracting periodic solution found with continuation
[Fig. 5(c)] and integrating as we increase and decrease κτ in small steps,
we obtain the bifurcation diagram by simulation shown in Figure 5(d). DDE-
BIFTOOL detects a stable solution for κτ ∈ [2.5661, 2.5675]; for this com-
putation the numerical accuracy was increased to ensure a significant fourth
decimal place. While this range is below present experimental accuracy, find-
ing this stable region showcases the usefulness of DDE-BIFTOOL. At the left
boundary of stability there is a torus bifurcation T . Simulation shows that the
emerging torus seemingly breaks up quickly to a small region of chaos. At the
right boundary of stability, the stable solution undergoes a period-doubling
bifurcation PD. Simulation shows a cascade to a short region of chaos. When
leaving the region of stability, the solution jumps to the main attractor of sys-
tem (1), in this case the attracting ‘hose-like’ torus. Notice that Figure 5(c)
contains twenty branches due to the period-doubled non-symmetric nature of
the solution, the periodic orbit is of period ten.

The new attracting periodic solutions, that were found in these simulations,
could be continued with DDE-BIFTOOL, but due to the small parameter
ranges in which these solutions exist, we stop here. However, the overall picture
is again that of the break-up of a torus but on a smaller scale.
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Fig. 6. Symmetric stable orbits (top) and corresponding symmetric unstable orbits
(bottom) shown in projection onto the E-plane. From (a) to (e) κτ takes the values
2.445, 2.450, 2.480, 2.500 and 2.531; the square is E ∈ [−400, 400]× [−400, 400].

6 Break-up of a torus

The bifurcation diagrams of Figure 2, along with the phase portraits in Fig-
ure 3, present a good picture of the main attractors involved in the break-up
of a torus in a semiconductor laser with PCF. However, in order to under-
stand this transition fully, in particular, to understand why we have a sudden
change from an attracting torus to a much larger chaotic attractor, we need
to investigate what happens to the underlying torus after locking. For this
it is not sufficient to use mere simulation, because for 2.440 < κτ < 2.555
one will only get an image of the stable periodic orbit [Fig. 3(c)], and not of
the torus (or its remainder) on which it lies. This is where our method for
the computation of the 1D unstable manifolds of the saddle periodic orbits is
crucial.

The saddle periodic orbits we used are along the lower part of S1 and are
shown in the bottom row of Figure 6. The top row shows the corresponding
stable orbits. Both are shown in projection onto the E-plane and the values
of parameters are κτ = 2.445, κτ = 2.450, κτ = 2.480, κτ = 2.500 and
κτ = 2.531. At these values of κτ , between SL and SB on the lower part of
S1 [Fig.2(b)], the saddle periodic orbits have exactly one unstable Floquet
multiplier and therefore, their unstable manifolds are one dimensional. This
allows us to compute them with the methods outlined in Section 3.

In Figure 7 we show the trace of these unstable manifolds in the plane Σ.
The crosses (+) mark the five intersection points with Σ of the saddle peri-
odic orbit in Figure 6. From each saddle point there emanate two branches
of the unstable manifold, which converge to neighbouring attracting points
(×) corresponding to the stable periodic orbit in Figure 6. In this way and
much like for ODEs, the torus, or what remains of it is the closure of these
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Fig. 7. Break-up of the torus in the plane Σ ≡ {N = 7.620 × 108}. Except for
(a), which was obtained by simulation, plotted are all branches of the 1D unstable
manifolds of the saddle points (+), which converge to the attractors (×). From (a)
to (f) κτ takes the values 2.400, 2.445, 2.450, 2.480, 2.500 and 2.531; the square is
E ∈ [−300, 300]× [140, 300].

branches of the 1D unstable manifold, and it shows up as a closed curve.
Note that there are twenty intersections associated with locking on the full
torus [Fig. 3(c)]. They correspond to the torus intersecting four times resulting
in four groups of five intersections. We show only the top five intersections.
Recall that the different branches of the unstable manifold are allowed to in-
tersect each other because we are looking at a two-dimensional projection of
an infinite-dimensional system.

Our computations reveal the following bifurcation scenario as κτ is increased
through the locking region. The locking of the quasiperiodic solution [Fig. 7(a)]
produces a stable periodic solution that exists on a smooth torus [Fig. 7(b)],
as one expects immediately after locking. However, smoothness is lost as the
manifold starts to ‘curl up’ along the stable periodic orbit. DDE-BIFTOOL
detects this transition at κτ ≈ 2.4502, where we found that the two Flo-
quet multipliers close to and inside the unit circle become a complex pair.
Figure 7(c) shows the manifold just after this transition at κτ = 2.450. No-
tice that the branches of the manifold are no longer smoothly connected at
the attractors (×) but now spiral into them. Physically, this corresponds to
damped oscillations of the laser output as it settles down to its periodic solu-
tion. The unstable manifold becomes increasingly folded and stretched as κτ
is increased and the chaotic region is approached. Nevertheless, the torus is
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Fig. 8. Break-up of the torus in the plane Σ ≡ {N = 7.620 × 108}. Plotted are
all branches of the 1D unstable manifolds for κτ = 2.531 (a) and κτ = 2.700
(b) on the lower part of S1, for κτ = 2.700 on the upper part of S1 (c) and
the associated intersection of the main attractor for κτ = 2.700 (d); the square is
E ∈ [−400, 400]× [−400, 400].

still a continuous (but not a smooth) object [Figs. 7(d) and (e)]. The tran-
sients are becoming increasingly complicated as κτ is increased. At κτ = 2.531
we see the unstable manifold covering a large part of the upper part of the
E-plane [Fig. 7(f)] and also making excursions into the lower part; see already
Figure 8(a) which shows the 1D unstable manifold of Figure 7(f) over a larger
area of the E-plane. Note that Figure 8 still shows the 1D unstable manifold
associated with only the top group of five of the twenty intersections of the
saddle periodic orbit with Σ.

At κτ ≈ 2.5348 the saddle periodic orbit undergoes a symmetry-breaking
bifurcation SB, resulting in an additional unstable direction of the unstable
manifold. However, it is still possible to compute the strong unstable manifold,
corresponding to the largest, real Floquet multiplier of the associated periodic
orbit [23]. This strong unstable manifold is shown in Figure 8 inside the chaotic
region for the saddle periodic orbit on the lower part of S1 at κτ = 2.700
[Fig. 8(b)]. It is indeed a continuation of the unstable manifold for κτ =
2.531 [Fig. 8(a)].

We also computed 1D unstable manifolds for the saddle periodic orbits along
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Fig. 9. Crisis bifurcation of the hose-like torus leading to a much larger chaotic
attractor. Plotted is one branch of the 1D unstable manifold (grey curve) and the
associated main attractor (black dots) before the crisis for κτ = 2.569 (a) and after
the crisis for κτ = 2.571 (b). Panel (c) is an overlay of the hose-like torus (black)
and the chaotic attractor (grey) that exist before and after the crisis bifurcation,
respectively; the square is E ∈ [−95, 105]× [235, 275].

the upper part of S1 between SB and SL. Here the saddle orbits have exactly
one unstable Floquet multiplier and, therefore, also have one unstable direc-
tion. An associated unstable manifold, for κτ = 2.700, is shown in Figure 8(c).
We observe that it is very similar to the unstable manifold in Figure 8(b). As is
generally the case, the unstable manifold accumulates on the chaotic attractor.
To illustrate this, the associated intersection with Σ of the upper and lower
parts of the main chaotic attractor for κτ = 2.700 is shown in Figure 8(d).

The sudden transition to chaos at κτ ≈ 2.570 is indicative of a crisis bifur-
cation, in which we see a discontinuous change in the size or shape of an
attractor [37–39]. In our case this attractor is the hose-like torus. At the cri-
sis bifurcation there is a rearrangement of stable and unstable manifolds of
suitable saddle points. It is not possible to compute the infinite-dimensional
stable manifold of a saddle point in a DDE. However, we can cast more light
on this bifurcation by computing the branch of the 1D unstable manifold that
ends up at the attractor. This is shown in Figure 9 (a) and (b) for one (of
the five) saddle points corresponding to the saddle periodic orbit; compare
Figure 2 (b). Just before the crisis bifurcation at κτ = 2.569 [Fig. 9 (a)] the
unstable manifold is contained in the basin of attraction of the hose-like torus
and, hence, eventually ends up at the corresponding attracting invariant cir-
cle. Notice however, that this branch makes large excursions before settling
down. After the crisis bifurcation at κτ = 2.571 [Fig. 9 (b)] the hose-like torus
has seemingly been replaced by a much larger chaotic attractor. The unstable
manifold accumulates on this new attractor, which has a shape resembling
the manifold just prior to the bifurcation. However, the chaotic attractor is no
longer confined by the stable manifold of the saddle. Overlaying the attractor
before and after the crisis bifurcation [Fig. 9 (c)] shows that the hose-like torus
is ‘part of’ the large chaotic attractor. In other words, in the crisis bifurcation
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a small ‘regular’ attractor (an invariant torus) suddenly and discontinuously
changes in size to become a chaotic attractor.

The crisis bifurcation we found in the PCF laser is much like an interior crisis in
that there is a sudden growth in the size of the attractor. However, the smaller
attractor is not chaotic itself (as is generally assumed in the definition of an
interior crisis [37–39]). We remark that the sudden appearance of the much
larger chaotic attractor is preceded by more and more complex transients due
to the increasingly complicated geometry of unstable manifolds; see Figs. 7–9.

7 Conclusions and Discussion

In summary, we have presented a detailed numerical investigation of a route
to chaos via the break-up of a torus in a PCF laser. A similar transition has
also been observed in a COF laser [8] but the actual sudden transition to the
chaotic attractor has not been explained. Our results clearly indicate that the
chaotic attractor associated with this transition was created at a crisis bifur-
cation. We believe this to be the first time that a sudden transition to chaos
has been studied in detail in a system of DDEs. This was only made possible
by advanced numerical tools for DDEs, namely the package DDE-BIFTOOL
to compute saddle periodic orbits, combined with our new technique for com-
puting unstable manifolds of saddle periodic orbits. This highlights the use of
these techniques for DDEs in general.

As an indication of the overall complexity of the bifurcation diagrams, Fig-
ure 10 shows the further continuation of branch N2 and the continuation of
another branch of non-symmetric solutions N3 from a period-doubling bi-
furcation of branch N1. Branches N2 and N3 both end in period-halving
bifurcations, at κτ ≈ 2.6063 and κτ ≈ 2.5893 respectively, leading to another
branch of non-symmetric solutions N4. Here we clearly see multiple solutions
existing for small intervals of κτ . Branches N2 and N3 contain a number of
saddle-node bifurcations of limit cycles SL and period-doubling bifurcations
PD, the latter lead to other branches which could be continued. Moreover,
at the end of branch N3 we find a small region of stability which undergoes
a period-halving bifurcation leading to a small region of stability on branch
N4 for κτ ∈ [2.5832, 2.5893]. We found that these stable solutions have such
small basins of attraction that it is numerically very difficult to find the stable
solution even when starting from the numerical approximation provided by
DDE-BIFTOOL. We believe that the period-doubling of this stable solution
on branch N4 is the start of a period-doubling cascade to chaos. If this is the
case, it implies the coexistence of two chaotic attractors.

We note here that the symmetry-breaking bifurcation SB on the upper part of
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Fig. 10. Bifurcation diagram obtained by continuation showing the branches N2

and N3, which are connected to a further bifurcating branch N4.

S1 [Fig. 2(b)] appears to coincide with the value of κτ at which we identified
the crisis bifurcation. A possible explanation connecting these two events is
as follows. As SB is approached along branch N1, the non-symmetric orbit
tends to the symmetric orbit of branch S1. The fact that these two periodic
orbits come together implies that a much larger phase space can be visited by
the unstable manifold. Eventually at SB the periodic orbits coincide and we
see the sudden emergence of the chaotic attractor.

We conclude with some questions for future work. What happens if we continue
the periodic solutions found between the bubbles of chaos? These solutions cor-
respond to the power oscillating at the frequency of the external-cavity modes

(ECMs) of the PCF laser, which oscillate at approximately an integer multi-
ple of the fundamental external-cavity frequency 1/τ . The periodic solution of
Figure 2(a), shown for κτ ∈ [2.300, 2.307], is the first of these ECM solutions.
Investigations indicate that all ECM solutions between the bubbles of chaos
at higher values of κτ are connected via branches of unstable solutions to an
(unstable) equilibrium existing close to locking for small values of κτ . For a
detailed study of the ECMs of the PCF laser we refer to Ref. [33].

There is a lot of current interest in the dimensionality of attractors in lasers
with delay, particularly for use in communication schemes [40]. We remark
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that the transition outlined in this paper, up to and including the chaotic
region, can occur in a phase-space of minimal dimension three. What are
the mechanisms involved in the routes to chaos for higher values of κτ? Are
these transitions to ‘high dimensional chaos’? We believe that the techniques
described in this paper will contribute to answering these questions.
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