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1 Introduction

Modern semiconductor lasers are small, easy to produce in large numbers and
very efficient in terms of turning electrical energy into coherent light. These
attractive properties are the reason that semiconductor lasers are today found
in their millions in numerous technological applications, including optical com-
munication networks and optical storage systems. On the negative side, semi-
conductor lasers are very susceptible to external optical influences, especially in
the form of delayed feedback due to reflections from external optical elements
and/or (bi-directional) coupling to other lasers. The delay arises due to the
travel time of the light before it (re)enters the laser. Compared to the very
fast time-scales of the dynamics inside a semiconductor laser (on the order of
picoseconds), distances between optical components on the order of centimeters
already result in considerable delays that cannot be neglected; see, for example,
[22, 24] as entry points to the extensive literature.

We are concerned here with the simplest case of a semiconductor laser with
conventional optical feedback (COF) in the form of reflections from a standard
mirror at some distance from the laser. In fact, even very small amounts of COF,
on the order of 0.1% of the output light, may destabilize the laser [11, 29]. This is
why in practical applications expensive optical isolators must be employed when
a semiconductor laser is coupled to optical fibers or other elements. The now
classical case is that of a single-mode edge-emitting laser (EEL) subject to COF.
In an EEL — the most commonly used semiconductor lasers today — light is
produced in an active region in the shape of a one-dimensional waveguide (with
a length of several hundred micrometers up to millimeters); the light exits at one
(or both) of the laser’s side facets, which act as (semi-transparent) mirrors; see
Fig. 1(a). Despite being quite long in the direction of lasing, single longitudinal
mode operation of EELs can be ensured, for example, by incorporating internal
frequency selective elements into the EEL. What is more, most EELs have a
quite narrow active region (of a few micrometers) so that they generally lase
at a single transverse mode. This means that the pattern of laser light at
the exit facet consists of a single spot under all operating conditions. Because
of these properties, an EEL can be described in a rate equation approach by
differential equations for the evolution of the (complex-valued) electric field and
the density of charge carriers (or inversion) inside the laser. In the presence of
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Figure 1: Sketches of an EEL with COF (a), and of a VCSEL with COF (b).

COF the electric field is coupled back to itself after a single fixed delay τ , and
this results in the now famous Lang-Kobayashi (LK) equations [28]. This delay
differential equation (DDE) has been shown in numerous studies to describe
experimental measurements very well (for weak to moderate COF); see, for
example, [11, 18, 19].

The question arises what dynamics may ensue in the presence of COF when
the laser supports more than one pattern of light at its exit facet. An example
of such a laser is a broad-area EEL, where the active region is so wide that the
light generally exits the laser not as a single wide spot, but as a one-dimensional
pattern of light that consists of a number of bright spots; see, for example,
[20, 31]. We do not discuss broad area lasers here, but rather concentrate
on the case that the aperture of the laser is truly two dimensional. Namely,
we consider vertical-cavity surface-emitting lasers (VCSELs) — an increasingly
important type of semiconductor laser with a cylindrical geometry, where a very
thin, spatially extended active region is located between two stacks of mirrors. A
VCSEL is pumped electrically via a circular contact and its light exits at the top
face from a disk-shaped aperture; see Fig. 1(b). VCSELs are even more efficient
than EELs and they are more easily integrated (on-chip) into larger arrays or
optical circuits. Another advantage is that VCSELs provide consistent single
longitudinal mode operation without additional elements (due to the very thin
active region). On the other hand, because of the spatial extent of their active
region and corresponding aperture, a VCSEL may support several transverse
optical modes. In other words, the light does not always exit the VCSEL in a
single large spot but generally in a two-dimensional pattern of bright spots on
the disk-shaped aperture. The number of transverse optical modes, or patterns
of light, that a VCSEL supports increases with the diameter of the aperture
[4, 20].

We consider here a VCSEL with COF in the presence of more than one
transverse optical mode. As opposed to the case of edge emitting lasers, the
modeling of VCSELs is still in development and under some dispute. However,
due to the two-dimensional nature of the active region, a VCSEL needs to
be described mathematically by partial differential equations for the electric
field and the inversion, and we follow here the modelling approach taken in
[41]. When subject to COF, the overall model takes the form of a delayed

2



partial differential equation (DPDE). Note that DPDE models have recently
also been considered in other application areas, including the control of spatial
patterns [34, 39] and dynamics testing methods for mechanical systems [27].
To analyze or even simulate a DPDE one generally needs to resolve the spatial
part of the system with a suitable expansion method (for example, by spatial
discretization or Galerkin projection). After truncation this leads to a (possibly
quite large) system of DDEs. In [15] we presented an eigenfunction expansion
method (EEM) that exploits the physical properties of the VCSEL in order to
obtain a DDE that describes the spatio-temporal dynamics of the transverse
modes under the influence of COF.

For the case of a VCSEL with COF that supports only two rotationally
symmetric transverse optical modes the EEM-reduced DDE is of quite low di-
mension, yet still describes the dynamics of the system accurately. This makes it
possible to perform a bifurcation analysis with advanced numerical continuation
tools of constant-intensity solutions, called external cavity modes (ECMs), and
even of oscillating-intensity solutions. As a specific example of this new capab-
ility we study here how the amount of self-feedback versus cross-feedback of the
two spatial modes influences stability regions of ECMs and periodic solutions
in the plane of feedback phase and feedback strength of the light as it re-enters
the laser. This is of practical interest because it is very difficult experimentally
to determine how much the spatial modes influence each other via a COF loop.
Our starting point is the observation that, in the degenerate case of pure self-
feedback, the ECM structure of the two-mode VCSEL with COF is effectively
that of a single-mode laser with COF. We then consider the transition to pure
cross-feedback between the two modes. More specifically, we present how the
two-parameter bifurcation diagram (in the plane of feedback phase and feed-
back strength) changes with the amount of self- versus cross-feedback. Each
bifurcation diagram consists of codimension-one bifurcation curves that meet
and interact at points of higher codimension. Qualitative changes in the bifurc-
ation diagrams are identified in the transition from pure self-feedback to pure
cross-feedback. Overall, we find a number of intermediate regimes that differ so
much that they might be used for characterizing the nature of the feedback in
an experiment.

The chapter is organised as follows. In Sec. 2 we briefly summarize the single
mode COF laser as described by the LK equations. The EEM-reduced DDE
model of a two-mode VCSEL is introduced in Sec. 3. The bifurcation analysis of
its ECMs is the topic of Sec. 4, and the stability of bifurcating periodic solutions
is discussed in Sec. 5. The final Sec. 6 summarizes and discusses directions for
future research.
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2 Single-mode laser with COF

In numerous studies it has been shown that the single-mode COF laser is de-
scribed well by rate-equations for the complex electric field E and the carrier
population N ; see, for example, [11, 18, 19]. These rate equations have been in-
troduced by Lang and Kobayashi [28], and they can be written in dimensionless
form as

dE

dt
= (1 + iα)EN + κeiCpE(t− τ), (1)

T
dN

dt
= P −N − (1 + 2N) |E|2 . (2)

Here P is the pump current, T is the ratio between carrier and photon decay
times, and α is the line-width enhancement factor. The last term in Eq. (1)
models the optical feedback from the external mirror; here the delay τ is given
as the fixed external round-trip time, κ is the (real-valued) feedback strength,
and Cp is the feedback phase (describing the sub-wavelength interaction between
E(t) and E(t − τ)). The feedback phase Cp is used as one of our bifurcation
parameters. In the representation of the results it is helpful that Cp is 2π-
periodic, which can be expressed as its invariance under the translation

Cp → Cp + 2π. (3)

Note that Cp has been shown to be accessible experimentally, allowing for an
excellent comparison with numerical solutions of the LK equations (in the short
external cavity regime) [18].

Because of the feedback term, system (1)–(2) is a DDE with a single fixed
delay and, as such, it has as its phase-space the infinite-dimensional space
C[−τ, 0] of continuous functions with values in (E, N)-space. This is due to the
fact that an entire history over the interval [−τ, 0] needs to be known to determ-
ine the future evolution of Eqs. (1)–(2). In particular, this means that already
the basic stability analysis of solutions of DDEs is much more involved than
for (the non-delayed case of) ordinary differential equations (ODEs). Namely,
equilibria and periodic solutions of Eqs. (1)–(2) have stability spectra consist-
ing of infinitely many eigenvalues [17]. Fortunately, it is possible to perform
a numerical bifurcation analysis of a given DDE with the recently developed
software tools DDE-BIFTOOL [7] and PDDE-CONT [37]; see also the survey papers
[23, 35].

The basic solutions of Eqs. (1)–(2) are known as CW-states or external cavity
modes (ECMs), and they are of the form

(E, N) = (Rse
iωst, Ns), (4)

where Rs, ωs, Ns ∈ R. The ECMs arise due to the underlying S1-symmetry
of Eqs. (1)–(2) that is given by multiplication of the electric field with a com-
plex number of modulus one, that is, by the transformation E 7→ cE for any
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Figure 2: Two-parameter bifurcation diagram of ECMs of the LK equations
(1)–(2) in the (Cp, κ)-plane. Panel (a) shows Cp over a wide range to bring
out the 2π translational symmetry, while panel (a) shows it over one period in
the interval [−π, π]. Shown are curves S of saddle-node bifurcation, curves H
of Hopf bifurcation, a codimension-two cusp point C, and a codimension-two
saddle-node Hopf point SH; black curves correspond to supercritical and grey
curves to subcritical bifurcations. Grey shading of increasing intensity indicates
the number of simultaneously stable ECMs, here up to three; P = 8.0, T = 750,
α = 3.0, τ = 500, and κ̄ = κ× 103.

c ∈ C with |c| = 1; mathematically, an ECM is a group orbit under this sym-
metry group [25]. (Since Rs, ωs and Ns are fixed, ECMs are also referred to as
fixed points in some parts of the literature.) To study the ECMs of the COF
laser one substitutes the ansatz (4) into the governing equations (1)–(2). Real
and imaginary parts are then separated, yielding the ECMs as solutions of the
transcendental equation

ωs = κ
√

1 + α2 sin(Cp − ωsτ + arctan(−α)); (5)

see also [13, 32, 36]. Given the ECM frequency ωs, the corresponding values for
the carrier population Ns and amplitude Rs can be computed from

Ns = −κ cos(Cp − ωsτ + 2nπ), R2
s =

P −Ns

1 + 2Ns
. (6)

Analytical results about the existence of ECMs (and some results about their
stability) can be derived from Eqs. (5)–(6); for example, turning points of this
equation correspond to saddle-node bifurcations of ECMs; see [13, 36] for details
and [8] as an entry point to asymptotic methods.

In order to continue ECMs in parameters and to determine their stability
it is necessary to resolve their S1-symmetry so that every ECM is an isolated
solution (rather than a circle in (E, N)-space). This can be achieved by moving
to a rotating frame of reference with fixed frequency b, as given by

E → Eeibt, b ∈ R. (7)
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Figure 3: Linearly polarized optical modes LPmn of a VCSEL.

After inserting Eq. (7) into Eq. (1), an ECM can now be studied as a steady
state solution for which b ≡ ωs; see [16, 23] for further details. Figure 2 shows
the two-parameter bifurcation diagram of ECMs in the (Cp, κ)-plane, where
we fix the laser parameters at P = 8.0, T = 750 and α = 3.0; furthermore,
we consider a fixed delay time of τ = 500, which corresponds to a distance
of approximately 10 cm between the laser and the mirror. Figure 2(a) shows
the bifurcation diagram in the covering space over four periods of Cp, so that
the 2π-translational symmetry (3) is clearly visible. The image in Fig. 2(b)
shows the bifurcation diagram for Cp ∈ [−π, π], that is, over the fundamental
domain of (3). The bifurcation diagram has been computed with the package
DDE-BIFTOOL, and it shows curves S of saddle-node bifurcations and curves H
of Hopf bifurcations. These curves divide the (Cp, κ)-plane into regions with
different numbers of ECMs. In the light grey region for small κ there is one
ECM, which is stable and the continuation of the solitary laser solution (that
exists for κ = 0). Once κ is chosen above the cusp point C, new ECMs may be
born in pairs in saddle-node bifurcations, one of which may be initially stable.
Stable ECMs lose their stability for increasing κ in Hopf bifurcations, which
give rise to stable oscillations of the laser power at the characteristic relaxation-
oscillation frequency, on the order of gigahertz. Note that the curves S and
H meet at the point SH, which is known as a codimension-two saddle-node
Hopf bifurcation [10, 26]. At this point there is a change in the character of
the curves S and H from super- to subcritical, meaning that they correspond
to bifurcations from which emanate unstable solutions for κ-values above SH.
For a more detailed bifurcation analysis of the ECM structure of the COF laser
see [13, 36].

3 VCSEL with optical feedback

A VCSEL may support different patterns of light on its aperture. Under the
assumption of weak guiding these patterns can be described mathematically as
linearly polarized (LP) optical modes, which are roots of the Helmholtz equation
[41, 43]. The resulting modes LPmn can be expressed in terms of Bessel func-
tions; they are characterised by n maxima of the Bessel function in the radial
direction, and 2m zeros in the azimuthal direction of the cylindrical waveguide;
some examples of LP modes are shown in Fig. 3.

Following [5, 14, 41, 43], a VCSEL can be described in a rate-equation ap-
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proach by PDEs for the evolution of the slowly varying complex electric fields
Ej

mn(t) of the modes LPmn with polarisation jth, coupled via the real-valued
spatial carrier population N(r, t, φ). (Here the polarisation index j can be either
c or s, which denote the two orthogonal cosine and sine instances of the mode
LPmn; note that the modes LP0n are rotationally symmetrical, so that they are
not distinguished in terms of transverse polarization.) In dimensionless form,
one obtains

dEj
mn(t)
dt

= (1 + iα)ξj
mn(t)Ej

mn(t) + F j
mn(t), (8)

T
∂N(r, φ, t)

∂t
=

df

r

[
∂

∂r

(
r
∂N(r, φ, t)

∂r

)]
+

df

r2

∂2N(r, φ, t)
∂φ2

+ P (r, φ, t)

− N(r, φ, t)−
∑

n

(
(1 + 2ξ0n(t))|E0n(t)|2|Ψ0n(r, φ)|2

+
∑
m

∑

j=c,s

2(1 + 2ξj
mn(t))|Ej

mn(t)|2|Ψj
mn(r, φ)|2

)
. (9)

The spatial pump P (r, φ, t) ≡ P (r) describes carrier injection over the core
region of the VCSEL via a rotationally symmetric contact. The modal gains
ξj
mn are given by integrals describing the spatial overlap between the respective

optical field and the inversion; see [15] for full details. The functions F j
mn(t)

describe an external perturbation that is applied to the electric fields of the
modes LPmn. In the present case, this external perturbation is optical feedback
from a mirror at a fixed distance, meaning that Eqs. (8)–(9) take the form of
a delayed PDE. To make this system amenable to a full nonlinear bifurcation
analysis one needs to resolve the spatial dependence. As is common [41], the
azimuthal direction can be resolved through the use of a Fourier series expansion

N(r, φ, t) =
∞∑

k=0

(
Nck(r, t) cos(kφ) + Nsk(r, t) sin(kφ)

)
. (10)

The radial direction could be resolved via the use of a finite difference discret-
ization scheme [14, 41]. However, this typically results in a large-scale system
of differential equations which are difficult to handle both analytically and nu-
merically. Therefore, we choose to perform a second eigenfunction expansion.
Namely, we use a kth order Bessel function expansion [15]

Nk(r, t) =
∞∑

q=1

Nkq(t)Jk(γk,qr). (11)

After these two expansions, and after suitable orthogonality conditions have
been applied [15], one is left with a spatially resolved system describing a
multi-transverse-mode VCSEL (with optical feedback). Importantly, the in-
tegral functions that describe the spatial overlaps between the inversion density
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with the pump current and the electric field, respectively, take the form of con-
stant coupling constants. Hence, they can be evaluated a priori, which leads to
a considerable speed-up in numerical computations; see [15] for full details of
the general case.

3.1 EEM-reduced model of a two-mode VCSEL with
optical feedback

We consider here in detail the case that the VCSEL supports only the first two
rotationally symmetric modes LP01 and LP02; see Fig. 3. These symmetric
modes are desirable in optical communication schemes for their coupling effi-
ciency, and they may be found stably in certain types of VCSELs, notably those
with smaller aperture diameter [4]. The two-mode VCSEL has been studied ex-
perimentally in [33], and theoretical studies can be found in [14, 15, 40]. From
the mathematical point of view, the LP01 and LP02 modes can be described by
their radial profile alone, which allows for a substantial reduction of the dimen-
sionality of the overall rate equations. Namely, one obtains the dimensionless
reduced DDE

dE1(t)
dt

= (1 + iα)ξ1E1(t)

+κeiCp
[
ηE1(t− τ) + (1− η)E2(t− τ)

]
, (12)

dE2(t)
dt

= (1 + iα)ξ2E2(t)

+κeiCp
[
ηE2(t− τ) + (1− η)E1(t− τ)

]
, (13)

T
dNq(t)

dt
= −(γ2

0,qdf + 1)Nq(t) + ρq

−
2∑

n=1

(
(1 + 2ξn)|En(t)|2β0q

n

)
. (14)

We consider here a total of q = 14 expansion terms for the spatial variable N ,
which was found in previous studies [14, 15] to give sufficient accuracy. (Note
that, for ease of presentation, we now write the Nkq(t) in Eq. (11) as Nq(t).)
Hence, the overall system consists of 18 differential equations in total. Here the
γ0,q are the roots of the qth Bessel function Jk, and the overlap integrals (which
only need to be evaluated once) are given by

ξn =
14∑

q=1

∫ 1

0

(
|Ψn(r)|2NqJ0(γ0,qr)

)
rdr, (15)

ρq =
2

[J1(γ0,q)]2

∫ 1

0

P (r)J0(γ0,qr) rdr, (16)

β0q
n =

2
[J1(γ0,q)]2

∫ 1

0

|Ψn(r)|2J0(γ0,qr) rdr. (17)
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Furthermore, the spatial pump P (r) in Eq. (16) is modeled as

P (r) = Pmax

(
1 + erf(2

√
75(−r + 0.3))

)
/2. (18)

The optical feedback has been introduced explicitly into Eqs. (12)–(13) for
the electric fields of the modes LP01 and LP02, respectively. As was the case
for the LK equations in Sec. 2, for each of the two fields the feedback has a
common delay time τ , a common strength κ and a common (2π-periodic) phase
Cp. The feedback terms depend on the homotopy parameter η ∈ [0, 1], which
models the amount of self-feedback versus cross-feedback of the two modes.
Specifically, for η = 1 both modes receive only their own feedback, which we
refer to as pure self-feedback; in fact, before the study in [14], only pure self-
feedback was assumed when modeling VCSELs with feedback. However, one
would expect that the modes are no longer orthogonal in the far-field (at the
point of reflection), and/or defects in the external mirror’s surface may result
in coupling between the modes. In short, one would expect a certain amount
of cross-feedback, that is, η < 1; note that the amount of self- versus cross-
feedback as modeled by η might be changed experimentally by mirror shaping
or the use of frequency selective feedback [38]. The other extreme is that of
pure cross-feedback for η = 0, where LP01 receives feedback only from LP02,
and vice versa. Hence, by decreasing η from 1 to 0 we are able to study over
the entire range the influence of self- versus cross-coupling on the dynamics
of Eqs. (12)–(13) as represented by the bifurcation diagram of ECMs in the
(Cp, κ)-plane.

3.2 Analytical results for the two-mode ECM structure

The basic solutions of Eqs. (12)–(14) are ECMs, which now are of the form

(E1(t), E2(t), N1,...,14(t)) = (R1e
iωst, R2e

iωst+iΦ, N1,...,14), (19)

where R1, R2, ωs, Φ, N1, . . . , N14 ∈ R. In other words, both modes have constant
but generally different amplitudes R1 and R2, which both feed from the same
constant reservoir of spatially distributed carriers as expressed by the constants
N1, . . . , N14 and Eq. (11). Furthermore, both fields have the same frequency ωs

with a constant phase shift Φ between them. We remark that in reality there is
a frequency difference between the two modes, but it is extremely small (only
about 1 THz), which motivates modelling the frequencies of the two modes as
identical.

The ECMs for the two-mode VCSEL as given by (19) again arise from the
underlying S1-symmetry of Eqs. (12)–(14). It is given by multiplication of
both electric fields with any complex number of modulus one, that is, by the
transformations

(E1, E2) 7→ (cE1, cE2) for c ∈ C with |c| = 1. (20)

As was the case for the LK equations, an ECM is a group orbit under this
symmetry group; when projected onto the (R1, R2, N1...14)-space an ECM can
be treated as a steady state solution [25].
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As before, we substitute the ansatz (19) into Eqs. (12)–(14) This yields two
coupled transcendental equations for the frequency ωs and the phase difference
Φ, which can be written as

ωs = κη
√

1 + α2 sin
(
Cp − ωsτ + arctan(−α)

)

+κ(1− η)
R2

R1

√
1 + α2 sin

(
Cp − ωsτ + arctan(−α) + Φ

)
, (21)

ωs = κη
√

1 + α2 sin
(
Cp − ωsτ + arctan(−α)

)

+κ(1− η)
R1

R2

√
1 + α2 sin

(
Cp − ωsτ + arctan(−α)− Φ

)
. (22)

Even though these formulae give a way of eliminating R1 and R2, unfortunately,
it is not possible to derive a general formula for just ωs or just Φ. (Alternatively,
one could eliminate Φ but then R1 and R2 remain.) This situation is analogous
to the task of finding the compound laser modes of two mutually delay-coupled
lasers [9].

However, we can analyse the ECM structure for the two special cases of pure
self-feedback where η = 1, and of pure cross-feedback where η = 0. Firstly, for
η = 1 the second terms of (21) and (22) are zero, so that both equations reduce
exactly to Eq. (5). Hence, the equation for the ECMs for the two-mode VCSEL
with pure self-feedback is exactly the equation for the ECMs of the COF laser.
Notice, however, that for the two-mode VCSEL model Eq. (5) represents two
identical solutions, which constitutes a degenerate (double-covered) situation.
Namely, for η = 1 the constant Φ shift between E1 and E2 can take any value,
and one can speak of a Φ-indeterminacy.

For η = 0, on the other hand, the first terms of (21) and (22) are zero, so
that the two transcendental equations reduce to

ωs = κ
R2

R1

√
1 + α2 sin

(
Cp − ωsτ + arctan(−α) + Φ

)
, (23)

ωs = κ
R1

R2

√
1 + α2 sin

(
Cp − ωsτ + arctan(−α)− Φ

)
. (24)

By eliminating R1 and R2 we obtain

(ωs)2 = κ2(1 + α2) sin
(
Cp − ωsτ + arctan(−α) + Φ

)

× sin
(
Cp − ωsτ + arctan(−α)− Φ

)
. (25)

We cannot solve this coupled system, but we can conclude that for η = 0 the
ECMs satisfy the additional π-symmetries given by the translations

Cp 7→ Cp + π and Φ 7→ Φ + π. (26)

In particular, this implies that the bifurcation diagram in the (Cp, κ)-plane is
invariant under translation of Cp by π (and not only under translation by 2π).
We remark that Eq. (25) is very similar to that determining the compound
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Figure 4: Two-parameter bifurcation diagrams of ECMs of Eqs. (12)–(14) in
the (Cp, κ)-plane. Panel (a) shows the double-covered case η = 1.0, with curves
DZ of double-zero eigenvalues and a curve H2 of Hopf bifurcations. Panel (b)
shows the case η = 0.0, with curves S of saddle-node bifurcation and curves H
of Hopf bifurcation. Grey shading of increasing intensity indicates the number
of simultaneously stable ECMs; Pmax = 2.0, T = 750, α = 3.0, df = 0.05,
τ = 500, and κ̄ = κ× 103.

laser modes of two mutually delay-coupled lasers with zero frequency detuning
[9]. This suggests that the two-mode VCSEL with pure cross feedback could
be interpreted as two spatially extended, mutually delay-coupled VCSELs —
one lasing at the LP01 mode and the other lasing at the LP02 mode, and both
having the same free-running frequency. Another requirement is that the two
VCSELs would have to have identical carrier dynamics (as they compete for the
same carrier reservoir). This latter requirement constitutes the main difference
with the case of two mutually delay-coupled independent lasers as studied in [9].

Overall, we find that the two extreme cases of pure self-feedback and of pure
cross-feedback have different special properties. The main question that we will
address next is how the corresponding bifurcation diagrams of ECMs in the
(Cp, κ)-plane transform into one another as the homotopy parameter η ∈ [0, 1]
is changed.

4 Numerical bifurcation analysis of the
two-mode ECM structure

We now perform a numerical bifurcation analysis of the ECMs of Eqs. (12)–
(14) with the continuation package DDE-BIFTOOL [7]. To this end, we again first
resolve their S1-symmetry (20) by moving to a rotating frame of reference with
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frequency b, now given by

(E1, E2) → (E1e
ibt, E2e

ibt), (27)

so that the ECMs can be studied as steady state solutions for which b ≡ ωs.
The ECMs can now be found and continued in parameters. To this end, we fix
the material parameters at Pmax = 2.0, T = 750 and α = 3.0; furthermore, we
set the diffusion constant to df = 0.05. As before, we consider a fixed delay
time of τ = 500, and use the feedback phase Cp and the feedback strength κ as
free parameters.

Motivated by the analysis in Sec. 3.2, our starting points are the bifurcation
diagrams in the (Cp, κ)-plane of Eqs. (12)–(14) for η = 1.0 and for η = 0.0, which
are shown in Fig. 4. For the case of pure self-feedback of η = 1.0 in Fig. 4(a) we
find a curve DZ of double-zero eigenvalues and a curve H2 of Hopf bifurcations.
The two curves meet at a point, labeled DZH2, where they change from super-
to subcritical, which is indicated by a change of the curves from black to grey.
Notice also the cusp point C on the curve DZ. The grey shading indicates the
number of coexisting stable ECMs in the different regions, of which there are
up to three. As was discussed in Sec. 3.2, the bifurcation diagram in Fig. 4(a)
is indeed as that for an equivalent COF laser; compare with Fig. 2(b). The
difference is that instead of a saddle-node bifurcation (with a single eigenvalue
zero) we find a double-zero eigenvalue along the curve DZ, which stems from
the fact that we are dealing with a degenerate (double-covered) case for η = 1.0.

The bifurcation diagram for the case of pure cross-feedback for η = 0.0
is shown in Fig. 4(b). One immediately notices its additional symmetry of
translation by π in Cp in accordance with (26). As a result, we find two curves
S of saddle-node bifurcations, with two cusp point C in the Cp-interval [−π, π].
Similarly, we find two sets of Hopf bifurcation curves H1 and H2, which meet the
curves S at codimension-two saddle-node Hopf bifurcations SH1 and SH2. In
accordance with general results of bifurcation theory, the curves S, H1 and H2

change from super- to subcritical at these bifurcation points. The point marked
DH1,2 is a codimension-two double-Hopf bifurcation, where the curves H1 and
H2 cross transversally. Grey shading again indicates the number of coexisting
stable ECMs in the different regions, of which there are up to four.

4.1 Dependence of the bifurcation diagram on η

We now consider the transition between the two special cases in Fig. 4 as the
homotopy parameter η is changed. To give an initial impression, Fig. 5 shows
one-parameter bifurcation diagrams for fixed κ = 0.003 where the power of the
first electric field P1 = R2

1 is plotted against the feedback phase Cp (over the
fundamental interval [−π, π]). From panel (a) to (f) η is increased from η = 0.0
in intermediate steps to η = 1.0. Hence, Fig. 5(a) and (f) correspond to one-
dimensional cross sections at κ = 0.003 through the two panels of Fig. 4, and
the remaining panels illustrate the transition between these two cases. In Fig. 5
parts of the branches are drawn black when the corresponding ECM is stable,
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Figure 5: One-parameter bifurcation diagrams showing the power P1 of LP01

against Cp. Stable parts of the branches are black and unstable part grey;
marked are saddle-node bifurcations (×), Hopf bifurcations (∗), and in (f) de-
generate double-zero points (◦). From (a) to (f), η takes the values 0.0, 0.3, 0.6,
0.7, 0.9 and 1.0; κ = 0.003 and the other parameters are as in Fig. 4.

and grey otherwise. Furthermore, saddle-node bifurcations (fold points with
respect to Cp) and Hopf bifurcations are marked.

For pure cross-feedback at η = 0, the ECM branches in Fig. 5(a) exhibit the
additional π-symmetry (26). Furthermore, for any value of Cp one finds either
three or four stable coexisting ECMs, which agrees with the two-dimensional
bifurcation diagram in Fig. 4(b) when crossed at κ = 0.003. As η is increased
from zero the additional π-symmetry is immediately broken. Furthermore, one
notices the emergence of Hopf bifurcations, which destabilize parts of the ECM
branches. Already in Fig. 5(b) for η = 0.3 the number of coexisting stable
ECMs is reduced to at most two. Notice further that the branches have moved
through one another, which leads to a Cp-interval with only one stable ECM.
As η is increased further to η = 0.6 in Fig. 5(c) the Hopf bifurcations move
closer to the saddle-node bifurcations near a small loop in the ECM branch. In
Fig. 5(d) for η = 0.7 one finds that this loop has disappeared together with the
associated saddle-node bifurcations (that is, fold points). For η = 0.9 in Fig. 5(e)
the two Hopf bifurcation points move towards the remaining two saddle-node
bifurcations. Finally, for pure self-feedback at η = 1.0 in Fig. 5(f) the Hopf
bifurcations take place exactly at the fold points. In fact, these points are
degenerate double-zero eigenvalue points; compare with Fig. 4(a).

Figure 5 raises some immediate questions. Where do the Hopf bifurcation

13



Cp/π Cp/π Cp/π

Cp/π Cp/π Cp/π

Cp/π Cp/π Cp/π

κ̄ κ̄ κ̄

κ̄ κ̄ κ̄

κ̄ κ̄ κ̄

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

H3

H2

S

H1

SH1

H1

H3
S

SH1

BT3

H1

H3 S

SH1

BT3

H1
H3

S

SH1

BT3

H1

H3

S

SH1

BT3

H1

H3

S

SH1

SH3SH3

H1

H3

S

SH1

SH3

H1

H3

S

SH1

SH3

H1

H3

S

SH2

SH3

H2

DH1,2

BT3

SH2

DH2,3

Figure 6: The two-parameter bifurcation diagrams of ECMs of Eqs. (12)–(14)
in the (Cp, κ)-plane for increasing values of η. From (a) to (i), η takes the values
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9; other parameters are as in Fig. 4.

points in Fig. 5(b) come from? How do the two saddle-node bifurcation points
disappear? Furthermore, what is the mechanism that produces the degenerate
double-zero point in the limit η = 1.0? To answer these questions we now
consider the changes of the entire two-parameter bifurcation diagram in the
(Cp, κ)-plane with η. Figure 6 shows nine intermediate bifurcation diagrams in
η-steps of 0.1, where the bifurcation curves and regions of ECM stability are
represented as in Fig. 4. In addition, we now find a white region without stable
ECMs, as well as a codimension-two Bogdanov-Takens bifurcation point BT3

(corresponding to isolated double zero eigenvalues [10, 26]).
Again, a first conclusion from Fig. 6 is that, as η is increased from zero,

the additional π-symmetry in Cp is immediately lost; see Fig. 6(a) for η = 0.1.
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In particular, a difference emerges of how the (two sets of) saddle-node and
Hopf curves interact. Namely, already for η = 0.3 as in panel (c) there is a
single codimension-two saddle-node Hopf point SH1 near Cp = −π, and a single
Bogdanov-Takens point BT3 near Cp = 0.7π; details of this transition near
η = 0.0 are presented in Sec. 4.2. There is an important distinction between
the corresponding Hopf bifurcation curves H1 and H3: the ensuing periodic
solutions are of two very different types. Namely, when H1 is crossed well-
known relaxation oscillations (ROs) arise. Crossing H3, on the other hand,
results in the emergence of external-cavity oscillations (EOs) with a period of
about the external round-trip time τ [15]. Notice further from Fig. 6 that, as η
is increased, the Hopf curve H3 associated with the EOs moves towards lower
values of κ. As a result, one would expect to find EOs already for lower values
of κ compared to ROs; the stability regions and the bifurcations of ROs and
EOs are discussed in more detail in Sec. 5.

As the curve H3 moves with η, a region without any stable ECMs opens up
for η ≥ 0.2. This occurs when H3 dips below the crossing point of the saddle-
node curves; see Fig. 6(b). Increasing η further we find that the Hopf curve H3

becomes steeper and changes slope; see Fig. 6(e). This is due to the fact that a
point of self-intersection of H3 moves into the chosen κ-range of [0, 0.007], giving
rise to a loop of H3; see Fig. 6(f). The Bogdanov-Takens point BT3 has left
our κ-region of interest, and instead a saddle-node Hopf point SH3 has moved
towards lower values of κ. Furthermore, a second saddle-node Hopf point SH3

on H3 also entered the κ-region of interest; in Fig. 6(f) these two points SH3

lie very close to one another, and they are responsible for the changes from
super- to subcritical of both S and H3. As η is increased further, the two sets
of saddle-node bifurcation curves, and the associated cusps points, converge to
one another. Simultaneously, the loop of the subcritical part of H3 decreases
in size and converges to the cusp point on S; see Figs. 6(g) to (i). Note that
the bifurcation diagram in the final panel (i) for η = 0.9 is a small perturbation
of the degenerate double-covered case in Fig. 4(a) for η = 1.0. Details of the
transition process towards η = 1.0 are presented in Sec. 4.3.

4.2 Transitions involving codimension-two points
near η = 0.0

We now consider in more detail what happens to the two sets of codimension-
two points SH1 and SH2 in Fig. 4(b) as η is increased. These two sets of points
are identical for η = 0.0 (because of the additional π-periodicity of Cp), but they
undergo two different transitions for η > 0.0. These are sketched in Figs. 7 and
8. The starting point is the interaction for η = 0.0 of the saddle-node curve S
and Hopf curves H1, H2 and H3 in codimension-two double-Hopf, saddle-node
Hopf and Bogdanov-Takens bifurcation points as sketched in Fig. 7(a). When
compared with Fig. 4(b), we note that the point BT3 in Fig. 7(a) is outside the
shown κ-range.

Figure 7 concerns bifurcations associated with the point SH1 near Cp = π
in Fig. 4(b). The ensuing transition is quite simple: with increasing η > 0 the
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Figure 8: Sketch of the second type of interactions of double-Hopf DH, saddle-
node Hopf SH and Bogdanov-Takens BT bifurcation points as η is increased
from zero.

double-Hopf points DH1,2 and DH2,3 move rapidly up and out of our region of
interest. At the same time, the points SH2 and BT move up and to the right
along the curve S. As a result, the Hopf curve H1 is the only Hopf curve in the
region of interest with a supercritical part, up to the point SH1; see Fig. 7(b).
The sketched situation is as that near SH1 in the panels of Fig. 6.

The second transition, sketched in Fig. 8, concerns bifurcations associated
with the point SH1 near Cp = 0 in Fig. 4(b). Starting from the same situation
in Fig. 8(a), as η is increased from zero the two saddle-node Hopf points SH1

and SH2 move closer together and the double-Hopf point DH1,2 moves down
along H1. The three points then all come together in a degenerate saddle-node
Hopf bifurcation point, after which SH1 and SH2 exchange positions along S
and DH1,2 disappears; see Fig. 8(b). Next the points SH1 and BT3 exchange
their positions along S; see Fig. 8(c). This is the situation one finds for η = 0.1
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Figure 9: Emergence of cusp points on the saddle-node bifurcation curve S and
their interaction with the Hopf curve H3. From (a) to (f), η takes the values
0.51, 0.52, 0.53, 0.59, 0.63 and 0.75; the other parameters are as in Fig. 4.

in Fig. 6(a). When η is increased above η = 0.1, the points SH2 and BT3

also exchange their positions along S, which involves the disappearance of the
double-Hopf point DH2,3 as well. As a result, the curve H3 is now the only
curve with a supercritical part in the region of interest, and it ends at the
Bogdanov-Takens point BT3; see Fig. 8(d). This is exactly the situation we find
in Fig. 6(b)–(e), where the point BT3 has entered the relevant κ-range while
SH1 and SH2 now lie outside this range.

The result of this, necessarily quite mathematical, discussion is a consistent
picture near the special bifurcation diagram for η = 0.0, which involves several
codimension-three bifurcations of ECMs in quick succession at η is increased.

4.3 Details of the transition to η = 1.0

We now investigate the emergence of the loop of the Hopf bifurcation curve
H3 in Fig. 6, its interaction with the saddle-node curve S and the subsequent
convergence to the degenerate bifurcation diagram for η = 1.0. The associated
changes to the bifurcation diagram are shown in Figs. 9 and 10. For η ≤ 0.4
there are two distinct saddle-node curves. However, as the loop of H3 develops,
we find that these two curves connect (at infinity) and form a single curve S that
has a cusp point at large values of κ; see Fig. 9(a). When η is increased further,
one encounters a codimension-three swallow-tail singularity [12] that creates two
further cusp points on the right-hand side of this (subcritical) saddle-node curve;
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Figure 10: Details of the convergence of the supercritical loop of the Hopf curve
H3 to the degenerate case for η = 1.0. From (a) to (f), η takes the values 0.8,
0.85, 0.88, 0.9, 0.99 and 1.0; the other parameters are as in Fig. 4.

see Fig. 9(b). As η is increased further, one of the cusp points moves through
the left branch of S, forming what looks like a down-pointing arrow, while this
entire structure moves to lower values of κ; see Fig. 9(c). For η ≈ 0.59 the
structure starts to interact with the Hopf curve H3, meaning that the saddle-
node Hopf bifurcations SH3 enter into the region near the cusp points; see
Fig. 9(d). Increasing η further, the points SH3 move up along S, as in Fig. 9(e),
and then move (one by one) past the upper cusp points onto the parts of S
between the cusp points; see Fig. 9(f). As a result, most of the curve S (with
the exception of the ‘arrow tip’) is now supercritical and, hence, part of the
ECM stability boundary; compare with Fig. 6(g). Notice also that the entire
structure is inside the region of interest for η ≥ 0.6.

Figure 10 illustrates in detail how the structure consisting of the cusp points
on S and the supercritical loop of H3 develops further as the degenerate case
η = 1.0 is approached. Panel (a) is an enlargement of the situation for η = 0.8.
As η is increased, the lower cusp points move towards larger values of κ and
above the lowest cusp point on S; see Fig. 10(b). The two sets of two remaining
cusp points (on the right and the left), and the associated short parts of S
between them that contain the saddle-node Hopf points SH3, move closer to
the each other; see Fig. 10(c) and (d). With increasing η they disappear in
swallowtail bifurcations, resulting in a situation as in Fig. 10(e) for η = 0.99.
Notice also that the entire curve H3 is now extremely close to S (the loop has
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Figure 11: Continuation in Cp of the leading eigenvalues of an ECM, repres-
ented by their real parts as a function of the DDE-BIFTOOL point number; grey
curves represent real eigenvalues and black curves complex-conjugate eigenval-
ues. Panel (a) is for η = 1.0, panel (b) is, for example, for η = 0.99 and
κ = 0.001, and panel (b) is for η = 0.99 and κ = 0.0015; other parameters are
as in Fig. 4.

shrunk down almost to the remaining cusp point on S). Indeed, the curves S
and H for η ≈ 1.0 are perturbations of the double eigenvalue zero curve DZ of
the limit η = 1.0 in Fig. 10(f).

Figure 11 shows what this perturbation statement means on the level of
the leading eigenvalues of the associated ECM as continued with DDE-BIFTOOL.
In each panel we plot the real parts of the eigenvalues as a function of the
DDE-BIFTOOL point number of the computed points in a continuation in the
feedback phase Cp (for fixed κ). Along grey parts the respective eigenvalue is
real, while black curves correspond to a pair of complex-conjugate eigenvalues.
Figure 11(a) shows the continuation of the leading eigenvalues of the limiting
and degenerate case of η = 1.0. There are two branches of real eigenvalues
that cross the zero axis at the two double-zero points DZ. Notice further that
there is a real eigenvalue zero independently of Cp (or the point number). We
find that, in this (non-dimensionalized) representation, the eigenvalue spectrum
for η = 1.0 does not depend on κ, as long as the curve DZ in Fig. 10(f) is
indeed crossed (only twice). Figure 11(b) shows the perturbation of the leading
eigenvalues for η ≈ 1.0 for the case that the bifurcation diagram in Fig. 10(e)
is crossed horizontally below SH3, for example, for fixed κ = 0.001. The ECM
is stable for large and small point numbers. It is destabilised (for increasing
or decreasing point number or Cp) in the supercritical Hopf bifurcation H3,
which takes place just before the saddle-node bifurcation S. The associated
pair of complex eigenvalues becomes real below and above H3. Figure 11(c)
shows the perturbation of the leading eigenvalues for η ≈ 1.0 for the case that
the bifurcation diagram in Fig. 10(e) is crossed above SH3, for example, for
fixed κ = 0.0015. The ECM is still stable for large and small point numbers,
but this time it is destabilised (for increasing or decreasing point number or
Cp) in the supercritical saddle-node bifurcation S, which takes place just before
H3. Again, the pair of complex eigenvalues becomes real below and above
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Figure 12: The two-parameter bifurcation diagrams of Eqs. (12)–(14) in the
(Cp, κ)-plane with the stability regions of periodic solutions. Shown are curves
of saddle-node bifurcation S, Hopf bifurcation Hi, period-doubling bifurcation
PD, torus bifurcations (Ti), and homoclinic bifurcation hom; regions of stable
ROs are shaded orange and regions of stable EOs are shaded blue, which dif-
ferent shading for overlap regions of coexisting stable per iodic solutions. From
(a) to (d), η takes the values 0.0, 0.3, 0.5, and 0.7; the other parameters are as
in Fig. 4.

H3. Overall, Fig. 11 shows that in both cases the limit for η = 1.0 is reached as
follows: the respective bifurcation points S and H3 and the nearby points where
two eigenvalues become complex converge to the point DZ. At the same time
the three branches in Fig. 11(a) are approached by corresponding branches in
Fig. 11(b) and (c).
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5 Stability and bifurcations of periodic solutions

The changes of the ECM bifurcation diagram with the homotopy parameter η
have immediate consequences for bifurcating periodic solutions. As was already
mentioned, there are two different types of periodic intensity fluctuations. First,
undamped relaxation oscillations that correspond to a periodic exchange of en-
ergy between the electric field and the inversion at a characteristic RO frequency
of around 5 GHz;
ROs are present in all semiconductor lasers, and they can easily be undamped
by external optical influences. Second, external round-trip oscillations, which
are due to the travel of the light to the mirror and back to the laser. Hence,
EOs generally have a much lower frequency — of around 500 MHz for the delay
time τ = 500 considered here. Both types of oscillations arise by crossing super-
critical parts of Hopf bifurcation curves in the bifurcation diagrams of Figs. 4
and 6. The question arises which branches of Hopf bifurcations give rise to
ROs and EOs, respectively, and how large their respective stability regions are.
As Fig. 12 shows, the answer depends strongly on the homotopy parameter
η. Shown are two-parameter bifurcation diagrams of the periodic solutions of
Eqs. (12)–(14) in the (Cp, κ)-plane for four values of η. Specifically, we determ-
ined the stability regions of ROs and EOs by computing bifurcation curves of
periodic solutions with the package PDDE-CONT [37], which is able to deal with
the additional S1-symmetry of the DDE. Apart from saddle-node and Hopf bi-
furcation curves, we also found curves of period-doubling bifurcations PD, of
torus (or Neimark-Sacker) bifurcations T , and of homoclinic bifurcations hom.
For ease of presentation we show one instance of the relevant part of the bifurc-
ation diagrams in Fig. 12 over several periods of Cp.

For the special case of η = 0 in Fig. 12(a) there is a stability region of ROs
that is bounded by two torus bifurcation curves T2 and T3, which emanate from
the codimension-two points DH1,2 and SH1, respectively. We also find a very
small region of EOs, which is bounded by the Hopf bifurcation curve H2 and a
torus bifurcation curve T1. The latter curve emanates from the codimension-two
saddle-node Hopf point SH2 and closely follows H2. Note that all bifurcation
curves are shown twice in Fig. 12(a) due to the additional π symmetry for
η = 0. As was shown in Fig. 7, when η is increased from zero, the double-Hopf
point DH1,2 moves rapidly up and to the left, leaving our region of interest.
As it does so, it ‘drags’ the torus curve with it, so that the RO stability region
rapidly grows in size and is now bounded by the Hopf bifurcation curve H1

below and torus bifurcation curves T2 and T3 above. The shape and size of the
RO stability region remains virtually unchanged when η is increased further; see
Fig. 12(b)–(d). The situation is quite different for the EOs. The local change
with η near the codimension-two points shown in Fig. 7, in combination with
the curve H3 moving towards lower values of κ, results for moderate amounts
of cross feedback in an EO stability region of considerable size; see Fig. 12(b)
for η = 0.3. This region is bounded below by the supercritical part of the
Hopf bifurcation curve H3 and above by a curve of period-doubling and a curve
of homoclinic bifurcations (that emerges from BT3). Notice that stable EOs

21



0.02

0.04

0 3500 7000
0.03

0.05

0.015 0.058

−0.023

−0.02
(b1)

(b2)

(b3)

|E1|
2

|E2|
2

t |E1,2|
2

N̂

r r

t

(b4) (b5)

0.02

0.04

0 200 400

0.03

0.06

0.018 0.068

−0.025

−0.018
(a1)

(a2)

(a3)

|E1|
2

|E2|
2

t |E1,2|
2

N̂

r r

t

(a4) (a5)

Figure 13: Coexisting relaxation oscillations in row (a), and external round-trip
oscillations in row (b). Shown are time series (column 1) of the powers P1 and
P2 of LP01 and LP02, their projections into (Ei, N̂)-space (column 2), and the
time series of the spatial intensity modes LP01 and LP02 of the laser (columns
3 and 4); η = 0.3, Cp = π and κ = 0.005; the other parameters are as in Fig. 4.

occur for much lower values of κ compared to ROs. Furthermore, we find a
large region of bistability between EOs and ROs for η = 0.3. As we have
seen in Sec. 4.1, with increasing η the supercritical part of H3 shrinks and
moves to lower values of κ. It turns out that the curves of period-doubling
and homoclinic bifurcations follow H3, meaning that the EO stability region
decreases dramatically as a result; see Fig. 12(c). As η approaches η = 1.0,
this region effectively disappears near the lowest cusp point of the curve S; see
Fig. 12(d).

Our results indicate that an experimental observation of EOs might be a
practical way of testing for the existence of cross-coupling between the two
transverse modes. Once EOs are found, a more ambitious goal would be to
actually map out experimentally the size of the EO stability region as a function
of both κ and Cp. It should be quite straightforward to distinguish EOs from
ROs, as EOs have a much lower frequency (which also makes it easier to measure
them [1]). However, there is another distinguishing feature, which is illustrated
in Fig. 13 with specific examples of simultaneously stable ROs and EOs from
the bistable region for η = 0.3 in Fig. 12(b). ROs are characterized by fast
oscillations, where the two electric fields with amplitudes P1 and P2 are in
phase; see Fig. 13(a1) and (a2). By contrast, EOs are slower oscillations (notice
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the difference in scale of the t-axes), where the two electric fields with amplitudes
P1 and P2 are in anti-phase; see Fig. 13(b1) and (b2). A physical interpretation
of the anti-phase behaviour of the EOs might lie in the fact that the modes
LP01 and LP02 compete for the spatial carrier source on a time scale that
agrees with the diffusion time: one mode exhausts the carriers and then decays;
while the carriers diffuse back, the other mode has a slightly larger overlap with
the replenishing carrier profile, so that it starts lasing first, and the process
repeats. We remark that on the level of the total spatial intensity of the laser,
the individual maxima and minima of P1 and P2 add up for ROs, but they
cancel each other out for EOs, leading to a less pronounced oscillation of the
total laser power.

Figure 12 shows that ROs and EOs destabilize when the feedback strength
κ in increased. Two examples in [15] illustrate that this may lead to more com-
plicated dynamics of the two modes involved: motion on an invariant torus bi-
furcating from ROs, and chaotic spatial mode dynamics after a period-doubling
sequence starting from stable EOs. In both cases the respective in-phase or
anti-phase dynamic was shown to be preserved.

6 Discussion

When one wants to model and study the dynamics of transverse spatial optical
modes, that is, patterns of light, in a laser subject to optical feedback then two
ingredients are crucial. Firstly, one needs a mathematical description of the
interaction of the spatial modes via their common spatial carrier reservoir that
is provided by electric pumping and carrier diffusion. We considered here the
case of a vertical-cavity surface-emitting laser with cylindrical geometry and
a disk-shaped aperture. Starting from a spatial rate equation model due to
[41], we used a mode expansion in linearly polarized LP modes of a cylindrical
waveguide. After discretization of the spatial carrier reservoir by Fourier modes,
one obtains a system of ODEs that describes the dynamics of the LP modes (up
to a given order and for both polarizations) inside the disk-shaped active region.
Secondly, the feedback enters into the equation of the electric field of each mode,
and it should be a function of the delayed electric fields of all modes. It is a
major open question how each mode is influenced by itself and by the other
modes as a result of the optical feedback from an external mirror. Note that in
all previous studies pure self-feedback of the modes had been assumed. However,
at least some cross-feedback between the modes via the feedback loop is likely to
occur. Therefore, we model cross-feedback between modes by the introduction of
additional homotopy parameters. This setting is still very general: the overall
model is a (possibly quite large) DDE with (possibly very many) homotopy
parameters in the feedback terms.

However, if one considers a VCSEL with only a few modes then the result-
ing DDE model may be small enough to allow for a bifurcation analysis with
advanced numerical tools. In particular, the effect of self- versus cross-feedback
of the different modes (as modeled by the homotopy parameters) can then be
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investigated. We studied here as a concrete example a VCSEL with COF that
supports only the first two rotationally symmetric LP modes; the expanded sys-
tem of ODE has dimension 18, and a single homotopy parameter η suffices to
describe the amount of self- versus cross-feedback. The resulting DDE system
is just small enough for numerical continuation tools and, in particular, it al-
lows for the computation of the eigenvalue spectrum of periodic solutions. This
allowed us to investigate how the stability regions of the external-cavity modes
and bifurcating periodic solutions, in the plane of feedback phase Cp and feed-
back strength κ, depend on the homotopy parameter η — all the way from pure
self-feedback to pure cross feedback. We found a consistent bifurcation scenario
that involves bifurcations of higher codimension, which, in effect, constitutes a
three-parameter study of the stability properties of the two-mode VCSEL.

Our bifurcation analysis revealed specific results that are of interest from
the physical point of view. First of all, we found large regions of coexistence
between stable ECMs, and this multistability might be useful for application,
for example, in all-optical flip-flop schemes. Moreover, we identified the exist-
ence of two distinct types of periodic solutions. The characteristic relaxation
oscillations can be found for sufficiently large feedback strength κ for any value
of η. However, we also found external round-trip oscillations, which show anti-
phase dynamics of the two spatial modes on the timescale of the delay time.
Importantly, EOs occur stably (in physically accessible regions of the (Cp, κ)-
plane) only for low to intermediate values of η, that is, for moderate amounts of
cross-feedback. Therefore, the bifurcation analysis suggests that in a two-mode
VCSEL an experimental observation of EOs may be used as an indication of
the amount of cross-coupling via the feedback loop.

An obvious challenge would be the study of VCSELs with general (not ro-
tationally symmetric) spatial modes. In this case the polarization of the modes
will also play a role. The resulting DDE models will necessarily be quite a lot
more involved, but the bifurcation analysis of ECMs in the presence of feed-
back may already be feasible for small numbers of spatial modes. Furthermore,
the experimental verification of model predictions of VCSEL dynamics remains
a considerable challenge. However, recent experiments in [2] have shown that
individual spatial modes of a VCSEL can be stabilized via polarization- and
frequency-selective feedback. Furthermore, high-speed imaging techniques as
described in [1] might be a way of measuring osciallatory mode dynamics.
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[11] Fischer I., Heil T. and Elsäßer W. [2005] “Emission dynamics of semi-
conductor lasers subject to delayed optical feedback: an experimentalists
perspective,” in [24], pp. 218–237.

25



[12] Fowler D. H. and Thom R. [1989] Structural stability and morphogenesis:
an outline of a general theory of models (Westview Press, Boulder Color-
ado).

[13] Green K. [2009] “Stability near threshold in a semiconductor laser subject
to optical feedback: A bifurcation analysis of the Lang-Kobayashi equa-
tions,” Physical Review E 79, 036210.

[14] Green K., Krauskopf B. and Lenstra D. [2007] “External cavity mode struc-
ture of a two-mode VCSEL subject to optical feedback,” Opt. Commun.
277, 359–371.

[15] Green K., Krauskopf B., Marten F. and Lenstra D. [2008] “Bifurcation
analysis of a spatially extended laser with optical feedback,” SIAM J. Appl.
Dynam. Syst. 8, 222–252.

[16] Haegeman B., Engelborghs K., Roose D., Pieroux D. & Erneux T. [2002]
“Stability and rupture of bifurcation bridges in semiconductor lasers sub-
ject to optical feedback,” Phys. Rev. E 66, 046216.

[17] Hale J. K. & Verduyn Lunel S. M. [1993] Introduction to Functional Dif-
ferential Equations (Springer-Verlag, New York).
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