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Abstract

We present a detailed study of the external-cavity modes (ECMs)
of a semiconductor laser with phase-conjugate feedback. Mathemati-
cally, lasers with feedback are modelled by delay differential equations
(DDEs) with an infinite dimensional phase space. We employ new
numerical bifurcation tools for DDEs to continue steady states and pe-
riodic orbits, irrespective of their stability. In this way, we show that
the periodic orbits corresponding to the ECMs are connected to the
steady state solution associated with the locking range of the laser.
We also identify symmetric and non-symmetric homoclinic orbits and
hysteresis in the system.

1 Introduction

Delay differential equations (DDEs) [Diekmann et. al. 1995, Hale and Ver-
duyn Lunel 1993] have received a lot of attention recently in the mod-
elling of dynamical systems where a feedback term is present. Examples
of fields in which DDEs are used to model a feedback term include, biol-
ogy [Murray 1980], chemistry [Epstein and Pojman 1998] and neuroscience
[Longtin et. al. 1990]. In particular, DDEs are used to model semiconduc-
tor lasers subject to delayed optical feedback, such as lasers with conven-
tional optical feedback (COF) from an external mirror, lasers with opto-
electronic feedback, mutually coupled lasers with delay, and lasers with
phase-conjugate feedback (PCF), the case considered here. These types
of feedback lasers have been studied extensively over the last decade by

*Email: kirk.green@bristol.ac.uk
tEmail: b.krauskopf@bristol.ac.uk



techniques involving the computation of bifurcation diagrams, phase por-
traits and optical spectra, obtained by numerical simulation of the govern-
ing DDEs; see, for example, [Van Tartwijk and Agrawal 1998], [Krauskopf
and Lenstra 2000] and further references therein. However, it has only re-
cently become possible to perform detailed numerical bifurcation analysis
by continuation methods for DDEs with the release of the package DDE-
BIFTOOL [Engelborghs 2000]. It allows numerical continuation of steady
states and periodic solutions in systems of DDEs, irrespective of their sta-
bility, and also detects local bifurcations. In the series of papers, [Pieroux,
Erneux, Haegeman, Engelborghs and Roose 2001, Pieroux, Erneux, Luzyan-
ina and Engelborghs 2001, Haegeman et. al. 2002], connecting bridges of
periodic solutions were studied between steady states in the COF laser
using DDE-BIFTOOL. Similar work on the rate equations describing a
vertical-cavity surface-emitting laser (VCSEL) can be found in [Sciamanna
et. al. 2002]. Continuation studies of the PCF laser can be found in [Green
and Krauskopf 2001]. Furthermore, in [Krauskopf and Green 2002] we devel-
oped a method to calculate unstable manifolds of periodic orbits in DDEs,
which was used in combination with DDE-BIFTOOL in [Green et. al. 2002]
to study the break-up of a torus in the PCF laser.

In this paper, we use these new continuation techniques to study a semi-
conductor laser receiving (instantaneous) phase-conjugate feedback (PCF)
from a phase-conjugating mirror (PCM) [Agrawal and Gray 1992, Gray et.
al. 1994, Krauskopf et. al. 1998, Van Tartwijk et. al. 1995]. Phase-conjugate
feedback is very desirable as it produces a return wave that coincides exactly
with the incident wave. In other words, the system is self-aligning. However,
PCF is experimentally difficult to achieve, but can be generated by degen-
erate four-wave mixing, a nonlinear process involving counter propagating
laser beams in an atomic vapour or a semiconductor material [Breton et.
al. 1991, Shimura et. al. 1993]. The PCF laser is shown schematically in
Fig. 1. The length of the laser is typically of order 0.1 mm, while the length
of the external cavity can be a few centimetres to one metre. This leads to
a large delay relative to the time-scale of the semiconductor laser.

More specifically, we perform a detailed bifurcation analysis of periodic
orbits found in the PCF laser. In a bifurcation diagram obtained by simula-
tion one finds stable periodic orbits interspersed with bubbles of more com-
plicated dynamics, which for the most part are chaotic; see already Fig. 2.
Between these bubbles the PCF laser is frequency locked, with its intensity
oscillating close to some integer multiple of the fundamental external-cavity
frequency [Krauskopf et. al. 1998]. One therefore refers to these stable
periodic orbits as external-cavity modes (ECMs) of the PCF laser. We re-
mark that one also finds external-cavity modes in the COF laser, in which
they are also referred to as continuous wave (CW) states. In the COF
laser, a CW-state is a periodic solution with constant intensity and inver-
sion, and a linearly evolving phase, of which solutions can be found analyti-
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Figure 1: Sketch of a semiconductor laser with phase-conjugate feedback.

cally [Van Tartwijk and Agrawal 1998, Verduyn Lunel and Krauskopf 2000].
We remark that this nature of the CW-states is a consequence of the S'-
symmetry of the COF laser. (Mathematically, the CW-states of the COF
laser are group orbits of a steady state under the S'-symmetry [Krauskopf
et. al. 2000].) In contrast, the ECMs of the PCF laser are genuine periodic
orbits with a periodically evolving intensity and inversion, and therefore can-
not be found analytically. Hence the need to employ advanced numerical
tools to investigate them.

Our main tool is DDE-BIFTOOL, which we use to continue the branches
of symmetric periodic orbits on which each ECM lies. By detecting symmetry-
breaking bifurcations along these symmetric branches we can switch to
and continue branches of non-symmetric periodic orbits. In fact, DDE-
BIFTOOL was extended to allow branch switching at symmetry-breaking
bifurcations to allow investigation of the PCF laser [Green et. al. 2002]. Con-
tinuation of these non-symmetric branches shows that a number of them end
in Hopf bifurcations. Therefore, an immediate question is, are all ECMs of
the PCF laser connected to one another via a non-symmetric steady state?

We answer this question to the positive, by giving a complete view of
the ECMs and their bifurcating branches and show how they are connected.
This includes identifying symmetric and non-symmetric branches, and all
local bifurcations along those branches. We also identify homoclinic bifur-
cations of symmetric and non-symmetric periodic solutions, extra regions of
stability and a bistability which leads to a hysteresis loop.



parameter ‘ value

a 3.0

G 1190 s—!

Tp 1.4 ps

I 65.1 mA

q 1.6x1071° C
Te 2.0 ns

No 1.64x108

Table 1: Parameter values.

2 Rate equations

The rate equations describing the PCF laser are well established [Agrawal
and Gray 1992, Gray et. al. 1994] and can be written as

dg—it) = % —iOAGN(N(t) - Nsol) + (G(t) - ,;_l_p>:| E(t)

+KE*(t — 7) expligpem] (1)
dN(t) T N()
@ = 4 — G |B@)?

for the evolution of the slowly varying complex electric field E(t) = E,(t) +
iEy(t) and the population inversion N(t). In system (1), nonlinear gain
is included as G = Gy (N — Ng)(1 — €P), where ¢ = 3.57 x 1078 is the
nonlinear gain coefficient and P = |E(t)|? is the intensity of the electric
field. This produces an effective detuning of 166 MHz. Parameter values
are set to the realistic values [Gray et. al. 1994, Krauskopf et. al. 1998]
shown in Table 1. The phase shift ¢pcy at the PCM was set to zero and
Nsot = Ny + 1/(Gn1p). The feedback term in system (1) involves the
feedback rate x and the external cavity round-trip time 7 = 2Ly /c which
we fix at 7 = 2/3 ns, corresponding to an external cavity length of Ley =~ 10
cm. Together they form the dimensionless bifurcation parameter x7.

Mathematically, system (1) is a delay differential equation (DDE). The
state of the system at time ¢ > 0 is a continuous function on the time
interval [t — 7,t], which is an evolution of the initial condition defined on
the time interval [—7,0] [Diekmann et. al. 1995, Hale and Verduyn Lunel
1993, Verduyn Lunel and Krauskopf 2000]. Therefore, the system is infinite-
dimensional. While (E, N)-space is not the phase space of system (1), it
is nevertheless helpful to show the dynamics projected onto (E, N)-space,
which is also called the physical space of system (1).

System (1) has Zo-symmetry under the transformation £ — —E, which
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Figure 2: Bifurcation diagram obtained by simulation showing normalized
inversion N versus the feedback strength k7. The stable periodic orbits cor-
responding to ECM1, ECM2 and ECM3 are interspersed with three bubbles
of chaotic dynamics.

corresponds to a rotation over 7 of the complex E-plane, so that an attractor
is either symmetric, or has a symmetric counterpart [Krauskopf et. al. 1998,
Krauskopf et. al. 2000]. Physically, this symmetry corresponds to a phase
shift by 7 of the laser light. The symmetry implies restrictions on the
types of bifurcations of periodic orbits: for example, symmetric periodic
orbits cannot undergo period-doubling bifurcations [Kuznetsov 1995]. More
generally, this discrete symmetry allows for the possibility of symmetry-
breaking bifurcations.

Figure 2 shows a bifurcation diagram obtained by simulation. It gives
a first impression of the dynamics and bifurcations of the PCF laser as the
feedback parameter k7 is increased. For each value of k7 we numerically
integrated system (1), using an initial condition from the attractor corre-
sponding to the previous value of k7 (thus, for non-symmetric solutions
assuring that we did not switch between symmetric counterparts). We then
plotted the normalized value of the inversion N = (N/Ny, — 1) x 10° when-
ever the intensity P crossed its average value in the increasing direction
[Green et. al. 2002, Krauskopf et. al. 1998]. The region with no points
corresponds to a steady state. A small number of points correspond to a
periodic orbit. While a large number of points correspond to quasiperiodic
or chaotic dynamics.



In Fig. 2 the stable periodic orbits corresponding to the ECMs can clearly
be seen interspersed with the bubbles of chaotic dynamics. Within these
bubbles of chaos the laser is between ECMs. The complex dynamics can be
thought of as the result of a competition between ECMs.

We observe an absence of points for k7 € [0.279,0.749] corresponding to
an attracting steady state. Physically, this corresponds to a frequency match
between the PCM pump laser and the solitary laser. Here the laser frequency
and phase are locked. The laser phase no longer undergoes diffusion and,
subsequently, the line-width of the laser is extremely narrow [Agrawal and
Gray 1992, Van Tartwijk et. al. 1995]. This narrow line-width was shown
to remain stable even with the addition of noise from spontaneous emission
[Gray et. al. 1994]. This is why the PCF laser is interesting for applications
requiring narrow laser line-width, such as, spectroscopy. We will see in
Sec. 3 that this locked state is the non-symmetric steady state to which the
branches of periodic orbits associated with each ECM are connected.

3 Bifurcation analysis

In order to provide a complete picture of the dynamics and bifurcations of
system (1) one must look beyond simulation. We now show that a bifur-
cation analysis of periodic orbits, where we start from the stable periodic
orbits observed in Fig. 2, is needed to give a full explanation of the ECMs
of the PCF laser.

3.1 Bifurcations and Continuation

The continuation package DDE-BIFTOOL [Engelborghs 2000] allows com-
putation of branches of steady states and periodic solutions irrespective of
their stability. For steady states, it approximates the right most roots of the
characteristic equation and corrects them using Newton iteration. Further-
more, orthogonal collocation based on a piecewise polynomial representation
with an adaptive mesh is used to compute periodic solutions and approxima-
tions of the associated Floquet multipliers. This is similar to the technique
used in the package AUTO [Doedel et. al. 1997] to approximate the solutions
to boundary value problems for ordinary differential equations (ODEs).
Although DDE-BIFTOOQOL supports no automatic detection of bifurca-
tions at present, the eigenvalues or Floquet multipliers along a branch of
solutions can be tracked using appropriate visualisation and, thus, local bi-
furcations can be detected. When a real Floquet multiplier passes through
the unit circle at +1 there are two possible bifurcations. The first is a
saddle-node bifurcation of limit cycles. Here a saddle periodic orbit collides
with a stable periodic orbit (or another saddle periodic orbit) and both
are destroyed, the solution then jumps to a different attractor. The second



possible bifurcation, due to the Zs-symmetry of system (1), is a symmetry-
breaking bifurcation. Here the symmetric periodic orbit is split into two
non-symmetric periodic orbits which are initially almost symmetric but lose
symmetry as one moves away from the bifurcation point. In bifurcation di-
agrams obtained by simulation a symmetry-breaking bifurcation shows up
as a doubling in the number of intersection points, for example, see Fig. 2
at k7 = 4.5. Experimentally, this is identified by a doubling in the period
of the power. Therefore, one must be careful not to confuse a symmetry-
breaking bifurcation with a period-doubling bifurcation which occurs when
a real Floquet multiplier passes through the unit circle at —1; only non-
symmetric solutions can undergo period-doubling [Kuznetsov 1995]. Lastly,
when a pair of complex conjugate Floquet multipliers pass through the unit
circle a torus (or Neimark-Sacker) bifurcation takes place.

3.2 Continuation of the steady state

Figure 3 (a) shows continuation of the non-symmetric steady state, where
we started from the stable (locked) state in Fig. 2. When the steady state
is stable it is denoted by a thick curve and by a thin curve otherwise. The
steady state is created at k7 =~ 0.279 in a saddle-node bifurcation. It is
destabilized in a sub-critical Hopf bifurcation H; at k7 = 0.749. We also
identify further Hopf bifurcations Hy to Hg when the steady state is already
unstable, which we refer to later in Sec. 3.3. For a detailed discussion of
this steady state we refer to [Green and Krauskopf 2001]. Here, we concen-
trate on the branches and bifurcations of periodic orbits associated with the
ECMs.

3.3 Continuation of ECMs

Figures 3 (b) and 4 were obtained by continuation with DDE-BIFTOOL of
the periodic orbits associated with each ECM. They show branches of peri-
odic orbits, denoted by thick curves when stable, and by thin curves other-
wise. In order to directly compare a periodic solution with a steady state
in Fig. 3 (b) we plot a normalized amplitude | max(Re(E)) — min(Re(E))|
against k7. This plot may appear complicated, but continuation of bi-
furcating (non-symmetric) branches clearly show that a number of them
end in Hopf bifurcations, identified by a normalized amplitude of zero. In-
deed, they end at the Hopf bifurcation points H; 336 already indicated in
Fig. 3 (a). This provides a connection between the different ECMs. The
different branches corresponding to each ECM are further distinguished by
the frequency ranges, as is highlighted in Fig. 4, where they are plotted as
a function of their period T. In both figures, all branches associated with
the first, second and third external-cavity modes (ECM1-ECM3) are blue,
green and red, respectively. The interval of k7 € [0, 8] was chosen to contain
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Figure 3: Bifurcation diagrams computed with DDE-BIFTOOQL showing a
normalized amplitude versus 7 for the steady states (a) and for all branches
emanating from the external-cavity modes (b).
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the first three ECMs.

The main branches, on which the ECMs lie are of symmetric periodic or-
bits and, therefore, since symmetric periodic orbits can not undergo period-
doubling bifurcations [Kuznetsov 1995, all branches of periodic orbits which
bifurcate from this main symmetric branch are non-symmetric. Another
consequence of the Zo-symmetry is that for a symmetric periodic orbit the
intensity is periodic with period T/2, while the period of the correspond-
ing periodic orbit is T [Krauskopf et. al. 2000]. With this in mind, we see
that ECM1 has a period ranging from 2.137 s to 2.477 s; ECM2 from 1.127 s
to 1.197s; and ECM3 from 0.717s to 0.747 s, corresponding to frequency
ranges of 1.21 GHz to 1.40 GHz; 2.51 GHz to 2.67 GHz; and 4.03 GHz to
4.20 GHz, respectively. This agrees well with the frequencies of 1.5 GHz,
3.0 GHz and 4.5 GHz mentioned in [Krauskopf et. al. 1998].

We computed the branches of periodic orbits which end at the Hopf
points Hj 2 3¢ by starting from an ECM and continuing branches of periodic
orbits. The two branches of periodic orbits emanating from H3 and Hy in
Fig. 3 (a) are not directly related to the ECMs we considered and were
computed from the periodic orbits created at the Hopf points. The branch
emanating from Hjy leads to a branch of unstable periodic orbits which ends
in a homoclinic bifurcation; see Sec. 3.5. We note that this branch is not
connected to any of the symmetric branches on which the ECMs lie. The
branch emanating from Hy is connected to the symmetric branch on which
the fourth ECM lies, which is beyond the scope of this paper.

Notice that when plotted as a function of the period T, as in Fig. 4, the
symmetric branches (on which the ECMs lie) have a similar shape. In each
case, a lower part of the curve contains the ECM (thick curve) is destabilized
when decreasing k7, in a saddle-node bifurcation of limit cycles; see also
Sec. 3.4.

Figure 3 (b) clearly shows that bifurcating branches emanating from the
main branches on which the ECMs lie end in Hopf bifurcations associated
with the same non-symmetric steady state; identified in Figs. 2 and 3 (a). In
order to provide a complete picture of these connections, these bifurcation
diagrams should be looked at together with the phase portraits along them,
shown in Figs. 5, 6 and 7, which we now discuss in some detail.

3.4 Bifurcations along branches

Figure 5 shows periodic orbits along the blue branch associated with ECM1.
Along the symmetric branch S; (see panels (al) to (a8)) the unstable pe-
riodic orbit, shown in panel (al), is stabilized in a torus bifurcation at
kT = 2.307 as k7 is decreased. The ensuing stable periodic orbit (see
panel (a2)) is ECM1. It is destabilized in a saddle-node bifurcation of limit
cycles at k7 = 1.860, where, as Fig. 2 shows, the attracting solution becomes
chaotic. Continuing S; further, one sees the branch pass through a number
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of bifurcations before a symmetry-breaking bifurcation at k7 ~ 0.471 again
stabilizes the branch. The ensuing stable periodic orbit, shown in panel (a4),
is not seen by simulation in Fig. 2 as it is connected to the main attractor
of the system by branches of unstable solutions. A saddle-node bifurcation
of limit cycles destabilizes this periodic orbit at k7 ~ 0.430. Its period then
starts to grow rapidly, and the periodic orbit spirals around the origin of
the E-plane, this is shown in panels (a5) to (a7). This is evidence that the
periodic orbit is approaching a homoclinic bifurcation. We detail this in
Sec. 3.5.

Figures 5 (bl)-(b4) and (c1)-(c4) show non-symmetric periodic orbits
along branches Ni and N2, respectively. Along N{, we see a clear change
in symmetry as the branch extends from the symmetry-breaking bifurcation
point on S7 at KT =~ 1.822. Initially the periodic orbit, shown in panel (bl),
is almost symmetric but quickly loses symmetry, before shrinking about the
non-symmetric steady state (see panel (b4)) associated with the Hopf bifur-
cation H;. This change in symmetry can also be seen along the period-two
branch N2, which bifurcates from Ni at k7 ~ 0.843 (marking the start of the
period doubling cascade shown in Fig. 2) and rejoins Ni close to the sym-
metric branch S; at k7 &~ 1.770. The period-two orbits in panels (c1) to (c4)
should be directly compared to the period-one orbits in panels (bl) to (b3).

The phase portraits along the non-symmetric branch N7 are given in
Fig. 5 (d1) to (d8). The branch N7 bifurcates from S; at the symmetry-
breaking bifurcation at k7 = 0.471. Again, the initial stable periodic orbit,
shown in panel (d1), is almost symmetric. It should be compared with the
symmetric periodic orbit in panel (a4). However, stability is quickly lost in
a period-doubling bifurcation. The ensuing unstable periodic orbits in pan-
els (d2) to (d8) quickly lose symmetry. They increasingly look like ‘one half’
of the symmetric periodic orbits of panels (a5) to (a8). As one moves along
N3, one ‘arm’ of the periodic orbit retracts about the origin of the E-plane.
However, an image of the larger arm along with its symmetric counterpart
is directly comparable with the symmetric orbits along S;. Finally, as with
S (see panel (a8)), N3 ends in a homoclinic bifurcation. An example of this
non-symmetric homoclinic orbit, which we investigate in detail in Sec. 3.5,
is shown in panel (d8).

Periodic orbits associated with ECM2 and ECM3 are shown in Figs. 6
and 7. The symmetric periodic orbits along Ss and S3 are shown in
Figs. 6 (al)—(a4) and 7 (al)—(a4), respectively. In both cases, no quali-
tative change in the shape of the orbits is observed. Figures 6 (b1l)—(b4),
7 (bl)—(b4) and 7 (c1)—(c4) show how bifurcating non-symmetric branches
N22, N31 and N?? end at the Hopf bifurcations Hy, H3 and Hg. As in the case
of branch N}, in all cases, the periodic orbit is seen to lose symmetry as one
moves from the bifurcation point, before shrinking about the non-symmetric
steady state associated with the respective Hopf bifurcation.

Apart from the Hopf bifurcations associated with ECM2 and ECM3 we
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Figure 5: Phase portraits along the branches S; (al)-(a8), Ni (b1)-(b4), N?
(c1)-(c4) and N} (d1)-(d8); shown in projection onto the E-plane. From (al)
to (a8) k7 takes the values 2.0617, 1.9366, 1.1850, 0.4410, 0.9155, 0.7898,
0.4905 and 0.0973; from (bl) to (b4) k7 takes the values 1.7929, 1.2871,
0.7964 and 0.7379; from (cl) to (c4) k7 takes the values 1.7507, 1.1496,
1.3869 and 0.8458; and from (d1) to (d8) x7 takes the values 0.4763, 0.7226,
0.9286, 1.3411, 1.6819, 1.5093, 2.1572 and 2.2414.
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Figure 6: Phase portraits along the branches Sy (al)-(a4), N2 (b1)-(b4) and
N3 (c1)-(c4); shown in projection onto the E-plane. From (al) to (a4) s
takes the values 4.3221, 4.4738, 2.3500 and 6.6011; from (bl) to (b4) k7
takes the values 4.2600, 3.3589, 1.5593 and 1.0411; and from (c1) to (c4) K7
takes the values 2.3097, 3.6737, 4.0689 and 4.3529.

find other bifurcation scenarios. The dashed line in Figs. 4 (b) and (c) rep-
resents a period-doubling bifurcation connecting the branches N3 and N2,
and therefore, forms another connection between ECM2 and ECM3. Fig-
ure 6 (c1)—(c4) shows the development of the periodic orbit along N3. Tt is
clearly seen to ‘fold’ over on itself, resulting in a period-two orbit in the local
vicinity of the period-doubling bifurcation point, shown in panel (c4). This
is a period-doubled version of the periodic orbit we find on N2, shown in
Fig. 7 (c¢3). This connection is also clearly shown in Fig. 3 (a). The dashed
box in Fig. 4 (c), enlarged in the inset, contains a hysteresis loop. Contin-
uing ECM3 for decreasing k7 shows that it is destabilized in a saddle-node
bifurcation of limit cycles at k7 = 6.703. The solution then jumps to the
non-symmetric branch N3 which is stable up until a torus bifurcation at
KT = 6.660. However, starting from and continuing the stable periodic orbit
on N?} for increasing k7 shows that it is destabilized in another torus bifur-
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Figure 7: Phase portraits along the branches S3 (al)-(a4), N3 (b1)-(b4) and
N2 (c1)-(c4); shown in projection onto the E-plane. From (al) to (a4) &
takes the values 7.5033, 7.5696, 4.9669 and 7.3940; from (bl) to (b4) k7
takes the values 6.6967, 6.6023, 6.5023 and 6.4098; and from (c1) to (c4) k7
takes the values 5.0243, 4.6283, 4.3615 and 4.1800.

cation at k7 = 6.707. Simulation has shown that the ensuing torus is short
lived and the solution jumps to ECM3 on Ss. Thus, for k7 € [6.703,6.707]
one observes a region of bistability between the stable symmetric periodic
orbit of S3 and the stable non-symmetric periodic orbit of Nj.

3.5 Homoclinic orbits

We now discuss in detail the homoclinic orbits identified in Fig. 3 (b), found
at the end of the branches S; and N}, and at the end of the branch emanating
from the Hopf bifurcation Hs.

A routine allowing computation of connecting orbits using projection
boundary conditions has been recently added to DDE-BIFTOOL [Samaey
et. al. 2001]. A homoclinic orbit can be approximated by a very high
period orbit, but by using projection boundary conditions one generally
achieves a more accurate orbit, particularly if one then wants to follow it in
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Figure 8: Homoclinic orbits of at the end of branches S; (a), N7 (b) and the
branch emanating from Hj (c), shown in projection onto (E, N)-space and
onto the E-plane respectively; the box is [—800,800] x [—800,800] x [7.45 x
10%,8.10 x 10%] and the square is [—1000, 1000] x [—1000, 1000].

parameters. This routine also gives stability information of the associated
saddle steady states (or homoclinic points). In Sec. 3.4, we identified two
possible homoclinic orbits of branches S; and N3, where the period of the
orbit started to increase rapidly for small changes in k7. It was shown in
Figs. 5 (al)—(a8) and (d1)—(d8) that both periodic orbits develop in a similar
fashion, until finally the symmetric orbit, shown in panel (a8), appears as
an image of the non-symmetric orbit, shown in panel (d8), together with its
symmetric counterpart. We also identified a homoclinic orbit at the end of
the branch emanating from the Hopf bifurcation Hs.

All three homoclinic orbits are shown in Fig. 8. The saddle point in-
volved in the homoclinic orbit in each case is the trivial saddle steady state
at (Re(E),Im(E),N) = (0,0,813.75). This trivial equilibrium does not de-
pend on k7. This was confirmed with DDE-BIFTOOL, which also gives
stability information about the saddle point involved in the bifurcation. For
all orbits, this saddle point has a leading real eigenvalue A\; =~ —0.333 and
a complex conjugate pair of unstable eigenvalues A3 ~ 19.6 & 758.9. In
all cases, this corresponds to the approximate one-dimensional attraction of
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the trajectory towards the homoclinic point, along its stable manifold, and
the two-dimensional spiral from the homoclinic point, along its unstable
manifold, shown in Fig. 8.

The upper row of Fig. 8 shows the homoclinic orbits at the end of the
symmetric branch S; (a), the non-symmetric branch N7 (b) and the branch
emanating from the Hopf bifurcation Hs (c) in projection onto (E, N)-space.
The lower row shows the same orbits projected onto the E-plane. All orbits
shown were converted from high period to homoclinic orbits using the new
DDE-BIFTOOL routine. However, there are still difficulties with conver-
gence of the Newton iteration. It can clearly be seen that the non-symmetric
homoclinic orbit in column (c) is exactly ‘one half’ of the homoclinic orbit
in column (a). The remainder of the retracting ‘arm’ detailed in Sec. 3.4 can
be seen in column (b). Investigations show that this ‘arm’ is not a numerical
artifact. In fact, we were able to obtain convergence of the Newton iteration
to this homoclinic orbit, so that it can be continued in two parameters.

Preliminary investigations using a 2-parameter continuation of the non-
symmetric steady state, identified in Sec. 3.2, has revealed a T-point bifur-
cation [Glendinning and Sparrow 1986]. More specifically, this codimension
two bifurcation occurs when a heteroclinic connection between the two non-
symmetric equilibrium, detailed in [Green et. al. 2002], collides with the
trivial saddle steady state. The existence of a T-point bifurcation implies
the existence of a logarithmic spiral of homoclinic orbits associated with the
trivial steady state. It is an organising centre of heteroclinic and homoclinic
orbits. In fact, the two-dimensional unstable manifold of the trivial saddle
steady state appears to form an upper organising boundary for the dynamics
of the PCF laser. A full analysis of the T-point bifurcation is ongoing and
beyond the scope of this paper.

4 Conclusions

We investigated periodic orbits in the PCF laser using recently developed
continuation techniques. Stable symmetric periodic orbits corresponding to
ECMs of the PCF laser have been shown to exist at different frequency
ranges. Moreover, by continuing unstable periodic orbits we have provided
a complete picture of how the ECMs of the PCF laser are connected to one
another. We showed how bifurcating branches of non-symmetric periodic
orbits ended in Hopf bifurcations. In each case, the respective Hopf point
was shown to be associated with the same non-symmetric steady state and,
therefore, a connection between the different ECMs of the PCF laser was
found.

We identified all bifurcations of periodic orbits along the branches and
key bifurcations were explained with phase portraits. This included a period-
doubling bifurcation between two branches associated with different ECMs.
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A bistability between a symmetric periodic orbit and non-symmetric peri-
odic orbits leading to a hysteresis loop was identified. Furthermore, some
branches were shown to end in homoclinic bifurcations associated with the
trivial steady state of the PCF laser.

This investigation made use of the latest techniques in the bifurcation
analysis of DDEs. In particular, we used very recent additions to DDE-
BIFTOOL for the computation of homoclinic orbits and branch-switching
at symmetry-breaking bifurcations. Our investigations of the PCF laser
also show the use of these new techniques in general for DDEs arising in
applications.

Future work will include analysing the homoclinic orbits in further de-
tail, especially with respect to their symmetry properties and the T-point
bifurcation. We will also investigate the sudden transitions from the periodic
solutions to chaos with new tools, namely by computing unstable manifolds
of saddle periodic orbits. One such sudden transition is the saddle-node bi-
furcation of limit cycles between ECM2 and the second bubble of chaos. It
appears to involve chaotic transients and our aim is to find the chaotic saddle
associated with this transition by computing the one-dimensional unstable
manifold of the bifurcating saddle periodic orbit.
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