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ABSTRACT 

The determination of irrigation demand is typically based on crop modelling using a long historic 

record of local daily weather data. However, there are rarely adequate weather station records near 

to given sites; often any local records cover a limited number of years, are incomplete, costly or are 

of poor quality.  

This paper examines whether version 1 of the UKCP09 weather generator can provide a simpler and 

effective method of calculating irrigation demand with sufficient accuracy for regulatory and design 

purposes.  

The irrigation demands at seven sites distributed around England were modelled using the UKCP09 

baseline climatology and compared to results modelled using daily observed weather records. For 

the design dry year used for irrigation planning, the weather generator replicated the observed 

conditions with reasonable accuracy. The weather generator was however less successful at 

replicating extreme dry years.  

These results are encouraging but also provide a note of caution for the use of these generated 

datasets for studying current irrigation demand and by implication for modelling future needs under 
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climate change. The study also demonstrated a simple sub-sampling approach for reducing the 

processing demands if using the dataset in more complex models, though this would not remove any 

underlying error. 

Keywords | irrigation demand, UK, UKCP09, WaSim, weather generator 

INTRODUCTION 

Water is essential for sustainable development, economic growth and poverty reduction, across a 

variety of sectors including agriculture, energy, environment and health (Stakhiv & Stewart 2010). A 

reliable supply is integral to many industries including the irrigated agri-business, and water stress 

has obvious implications for food production, rural businesses and rural employment (Knox et al. 

2009; Daccache et al. 2011). Water is also expected to be the primary medium through which 

people, ecosystems and economies will first experience the effects of climate change. 

While the volume abstracted for irrigation in the United Kingdom is relatively small, it peaks during 

the summer months when water resources are most strained, and can create conflict with other 

demands for water, most notably for the public water supply and environmental protection 

(Daccache et al. 2011). Summer water resources in many catchments are already fully licensed, and 

some are over licensed or even over abstracted (Knox et al. 2010). There is pressure to reduce 

excessively large licences. Where water is available, applicants for renewal of existing time-limited 

licences and/or additional abstractions are required to prove a “reasonable need” for the water they 

request.  

Potatoes (Solanum tubersom L.) are the most important irrigated crop in the UK, accounting for 43% 

of the total irrigated area and 56% of the total volume of water abstracted in the UK (Weatherhead 

2006; Knox et al. 2009). Their sparse root system (85% of the root length is concentrated in the 

upper 0.3 m soil layer) means they are particularly sensitive to moisture stress (Opena & Porter 

1999). The UK potato industry has changed dramatically in recent decades, from a relatively small 

sector consisting of individual farms to a much larger consortium of major agri-businesses. This shift 
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in production has been principally attributed to rising demand for high quality produce, most easily 

met by irrigation; this has in turn led to greater interest in irrigation demand modelling across the 

industry as a whole (Knox et al. 2010).  

Irrigation demand in a highly variable climate such as the United Kingdom’s is best predicted by crop 

modelling using a long historic daily weather record (generally at least 20 years), precipitation and 

evapotranspiration being the primary variables of interest (Kilsby et al. 2007). Unfortunately, there 

are rarely adequate weather records near to a given site; local weather stations often cover only a 

limited number of years, have incomplete or corrupted records, and/or do not record all the 

variables required to accurately calculate evapotranspiration. There are also significant costs 

associated with obtaining and validating the data. As a result, the analysis is often based on a 

synthesis of limited local records with more complete or longer term data from elsewhere, or an 

interpolation between data from distant stations.  

Weatherhead and Knox (2000) developed a procedure for calculating design dry-year irrigation 

demands (defined as meeting the demand in 80% of years) for use by the regulator in England, the 

Environment Agency (Mathieson et al. 2002). They mapped the country into seven agro-climatic 

zones based on Potential Soil Moisture Deficit and produced look-up tables for each zone, three soil 

classes (based on soil water availability) and the major irrigated crop categories. However this 

procedure reveals little about demand in other years, or how varying farm practices or crop varieties 

could influence demand. 

The United Kingdom Climate Projections 2009 (Jenkins et al. 2009), or “UKCP09”, dataset provides 

baseline and future probabilistic climate projections at a 25 km scale resolution generated from a 

perturbed ensemble experiment using the HadSM3 Global climate model (GCM) and other climate 

models, but these are only available as monthly values, which is insufficient for modelling 

supplemental irrigation demand. In contrast, baseline and future daily (and even hourly) projections, 

and at a finer spatial resolution of 5 km, are available from UKCP09’s integrated weather generator 
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(Jenkins et al. 2009). Weather generators, such as the UKCP09 weather generator, have been 

increasingly used to downscale GCM outputs. They are particularly advantageous as they allow 

climate variability and uncertainty to be modelled. Historically, they were typically used to 

supplement observed records, in situations where data is missing or potentially erroneous (Wilks & 

Wilby 1999). By comparing the weather generator’s synthetic series against the observed record we 

can effectively quantify the skill of a weather generator (Min et al. 2011). Once calibrated, weather 

generators require no manual data input or prior knowledge of climate modelling, allowing for non-

specialist end users to better gauge the extent and magnitude of potential impacts associated with 

climate change. Their growing popularity has in turn led to more widespread uptake across the 

industry as a whole (Severn Trent Water Ltd 2011).  

The UKCP09 weather generator is based around a stochastic rainfall model; other climate variables 

are then derived from the rainfall state using statistical relationships. Five rainfall states are 

considered; dry today/dry yesterday, dry today/wet yesterday, wet today/wet yesterday, wet 

today/dry yesterday and dry today/dry yesterday and dry the day before (Eames et al. 2012). It 

provides statistically credible synthetic climatology that is consistent with the underlying baseline 

and probabilistic future climate projections (Jones et al. 2009). However, it is not intuitively clear 

that the result will be adequate for modelling irrigation water use, which depends mainly on the 

frequency and extremeness of dry periods of 10 days or more in a humid climate such as England. 

The high spatial and temporal resolution of the UKCP09 weather generator make it an attractive 

candidate for use with daily soil water balance models such as WaSim (Hess & Counsell 2000) and 

DSSAT (Daccache et al. 2011) which are already being used for irrigation demand estimation. 

Originally designed as a learning and education aid, WaSim has proven itself invaluable across a 

range of hydrological studies including determining irrigation requirements, optimising water 

management and assessing the performance of sub-surface drainage systems (Depeweg & Fabiola 

Otero 2004; Meenakshi Hirekhan et al. 2007). WaSim was selected for this (and other) studies 



  

6 October 2013  Page 5 of 24 
 

largely on the basis of its flexibility, data availability and demonstrated value as a research tool 

(Fasinmirin et al. 2008; Holman et al. 2009).  

The UKCP09 weather generator does suffer from certain known limitations (discussion later). While 

it can be updated and improved (and many of these limitations reduced), it is important to 

encourage its use for real world decision making (Harris & Bridgeman 2012). However, for this to 

occur it must be first demonstrated that the UKCP09 weather generator can provide synthetic 

climate series which are consistent with the observed records and that a decision maker would 

arrive at the same (or similar) decision had they used the weather generator instead of the observed 

record. Without this evidence, its continued use for irrigation demand modelling will also be brought 

into question, with obvious implications for future planning.  

This aim of this paper is to establish whether the UKCP09 weather generator can provide an 

effective tool for irrigation demand modelling which is consistent with the observed record. Two 

sources of recorded data were considered, from the Met Office’s interpolated 5 km grid and directly 

from weather stations. Generated climate variables at seven sites are first compared with the 

equivalent observed records. The average annual irrigation demand, the 80% dry year demand 

(following the current best practice approach for irrigation design) and the extreme year demand for 

a potato crop are then calculated for each dataset. These are compared to establish whether a 

decision maker would arrive at the same decision if they used the weather generator instead of the 

observed record.  

METHOD 

Baseline climatology (1961-1990) is available through the UK Met Office in the form of an 

interpolated 5 km grid covering the entire UK, derived from the observed record. Thirty-six individual 

climate parameters are available, including temperature, precipitation, sunshine hours, relative 

humidity and wind speed. The interpolated grid was generated using inverse-distance weighted 

interpolation, by means of an irregular spaced and evolving network of observed weather stations 
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(UK Met Office 2012). However, this database is limited to average monthly values (UK Met Office 

2012b). Daily records can be obtained at actual weather station sites from the BADC (British 

Atmospheric Data Centre 2012).  

Climate baselines 

Seven sites (Table 1 and Figure 1) were selected to represent a range of agro-climatic conditions, the 

spatial distribution of irrigated potatoes and on the basis of the quality and completeness of their 

daily records during the baseline period. For most sites that covered most of the 30 year 1961-1990 

baseline period. Baseline observed daily data, and monthly averages at a 5 km grid resolution, were 

obtained, and duplicate and spurious data entries were removed prior to data processing. 

Evapotranspiration was derived using Penman-Monteith (Monteith 1965), using the period 1969-

1990 due to the lack of earlier wind speed data for the interpolated grid 

Table 1 Weather station sites and records used 

Station name Station ID Elevation(m AOD) Latitude Longitude Data from Data to 

Brooms Barn 435 75 52.260 0.567 1/1/1964 31/12/1990 

Carlisle 1070 26 54.934 -2.962 1/1/1961 31/12/1988 

Ringway 1135 69 53.356 -2.279 1/1/1963 31/12/1990 

Shawbury 643 72 52.794 -2.663 1/1/1962 31/12/1990 

Slaidburn 507 192 53.987 -2.433 1/1/1961 31/12/1990 

Terrington 406 2 52.745 0.290 1/1/1963 31/12/1990 

Woburn 458 89 52.014 -0.595 1/1/1961 31/12/1990 
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Figure 1 Weather station sites 

UKCP09 weather generator 

The UKCP09 weather generator provides statistically equivalent 30 year daily weather sequences for 

any given time slice and emission scenario of interest. The UK Climate Impacts Programme (UKCIP) 

suggest a minimum of 100 sequences should be used in analyses and modelling. For this study, 

therefore, 300 control (baseline) sequences were generated for each of the 5 km pixels where the 

seven sites are located using version 1 of the UKCP09 weather generator. This corresponds to 100 

sequences for each of the three climate change scenarios (although the baseline sequences without 

climate change are of course equivalent). Whether fewer sequences would give similar results is 

discussed later. 

As an initial check, the weather generator baselines were compared to the observed record at each 

weather station in terms of a) monthly precipitation and b) monthly evapotranspiration, given the 

importance of these variables for modelling irrigation demand.  
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The weather generator baselines values were then compared to the Met Office’s interpolated grid 

values. Statistical analysis, using a Mann Whitney U-test, was undertaken in order to establish 

whether there was a significant difference in these basic parameters between the weather 

generator outputs, the observed records and the interpolated grid.  

Irrigation demand 

Next, WaSim was used to model irrigation demand at each site. WaSim undertakes a multi-layer 

one-dimensional, daily, soil water balance, it simulates inflow (infiltration) and outflow 

(evapotranspiration and drainage) and storage of soil water in response to climate, irrigation and 

drainage (Depeweg & Fabiola Otero 2004). WaSim divides the soil profile into five layers, water 

moves from upper layers to lower layers when the water content of the respective layer exceeds 

field capacity. The first three layers are comprised of the surface layer (0-0.15 m), the active root 

zone layer (0.15-root depth) and the unsaturated layer below the root zone (root depth-water 

table). The remaining two layers are comprised of the saturated layer above drain depth (water 

table – drain depth) and the saturated layer below drain depth (depth drain – impermeable layer). 

The boundary between the second and third layers will change in response to root growth (e.g. in 

the case of potatoes, layer 2 will have zero thickness when root depth is less than 0.15 m, and will 

then increase as the potato develops). 

WaSim requires rainfall and evapotranspiration data in order to run. An additional utility, WaSimET, 

is available for calculating evapotranspiration from climate data using Penman-Monteith, Food and 

Agriculture Organisation (FAO) Modified-Penman or Penman methods. Guidance values covering 

crop development and root depths are provided for selected crops within WaSim, and up to three 

crops to be combined in a cropping pattern (Hess & Counsell 2000). Root development is assumed to 

increase from the planting depth to the maximum depth following a sinusoidal curve between the 

planting date and the maximum root date. Irrigation schedules can be set up as either calendar or 

rule based. Calendar schedules assume a fixed irrigation date (e.g. 30 days after planting – irrigate 60 



  

6 October 2013  Page 9 of 24 
 

mm), whereas rule based scheduling, used in this study to simulate actual farmer behaviour in 

England, divides the cropping season into a series of irrigation and non-irrigation periods on the 

basis of rules governing the frequency and volume of irrigate application. In its basic format WaSim 

is not capable of processing multiple climate files succinctly, so a modified version was developed 

and employed for this study to speed up data processing. 

A potato crop was simulated with a planting depth of 0.15 m, max root depth of 0. 7m and planting 

date of 1st April. An irrigation schedule was chosen based on best practice guidelines including scab 

control (Defra 2005). This schedule consisted of 4 periods (1 non-irrigation followed by 2 irrigation 

and 1-non irrigation), applying 15 mm of irrigate early in the growing season when the root zone 

deficit exceeded 18 mm during period 2 (15th May-30th June) and applying 25 mm irrigate when the 

root zone deficit exceeded 30 mm during period 3 (30th June-31st Aug). Irrigation early in the growing 

season is essential for some varieties for minimising the chance of potato scab, a common bacterial 

blight which can severely reduce the market value of produce (Liu et al. 1996). Irrigation is also 

important for promoting higher tuber numbers, accelerating crop canopy growth, reducing the 

chance of uneven growth and thumbnail cracking and reducing crop damage during harvesting 

(Defra 2005). The soil type was set as sandy loam, which is the dominant soil type for potato crops in 

England, with an assumed saturation of 43.3% and field capacity of 24.5%. In reality soil types will 

differ between the investigated sites, though for the purpose of this study they were assumed to be 

the same for consistency. 

At each site, the annual irrigation demand was calculated each year in the 300 x 30 year generated 

sequences and for the observed weather record. Statistical analysis, using a Mann Whitney U-test, 

was then undertaken to establish whether there was a significant difference between the average 

annual irrigation demand and inter-annual standard deviation from the weather generator 

sequences and the observed record. Transformations were subsequently applied where the data 

was not normally distributed. If it was still not normally distributed, a non-parametric test (Mann 
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Whitney U-test) was used. Where the data was normally distributed, either before or after 

transformation, a 2 sample T-test was used.  

Each sequence was then ranked from smallest to largest based on the annual irrigation demand; for 

the 300 generated sequences this gave 300 values for the “driest” year, the second driest etc. The 

80th percentile design dry year values were then identified, and again compared to the observed 

values. The extreme dry year values were similarly compared. 

Finally, a short study was undertaken to establish whether it would be possible to use fewer weather 

generator sequences and still obtain reasonable accuracy. The following equation, (e.g. Lohr 1999) 

was applied. 

N0=z2(s2/e2) 

Where: N = minimum sample size 

z (for 95% Confidence Interval) = 1.96 

S= standard deviation 

e= error coefficient 

RESULTS 

Climate baselines 

The results revealed that the observed and weather generator datasets of monthly average 

precipitation and evapotranspiration were significantly different at the majority of the sites (Table 

2). The observed record also exhibited a much larger precipitation standard deviation than the 

weather generator at all the sites (e.g., Figure 2). Observed and weather generator average monthly 

precipitation was significantly different at the 95% confidence interval at the majority of the sites. 

The weather generator and interpolated grid values also provided significantly different results at 
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the majority of sites. These findings were unexpected given that the weather generator was itself 

calibrated on observed daily rainfall totals and other weather variables. 

 

Figure 2. Monthly precipitation at the Slaidburn site for the baseline period 1961-1990, comparing 

observed weather station records (X), weather generator datasets (∆) and interpolated grid values 

(o). Error bars represent one standard deviation above and below the observed and average 

weather generator record. 

Table 2 Test for significant differences comparing observed and weather generator monthly 

precipitation and monthly evapotranspiration and interpolated grid and weather generator 

monthly precipitation and monthly evapotranspiration at the 95% confidence interval for all seven 

sites.  

 Precipitation p-value 

Site Observed versus weather generator Interpolated grid versus weather generator 

Brooms barn 0.002 0.000 

Carlisle 0.068 0.315 
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Ringway 0.000 0.000 

Shawbury 0.002 0.432 

Slaidburn 0.495 0.000 

Terrington 0.092 0.269 

Woburn 0.000 0.000 

 

 Evapotranspiration p-value 

Site Observed versus weather generator Interpolated grid versus weather generator 

Brooms barn 0.004 0.131 

Carlisle 0.033 0.005 

Ringway 0.000 0.000 

Shawbury 0.002 0.027 

Slaidburn 0.071 0.000 

Terrington 0.008 0.398 

Woburn 0.018 0.014 

 

Irrigation demand 

Results from the analysis of average annual irrigation demand are shown in Figure 3. The weather 

generator results are within one 25 mm application (the depth of a typical single application) of the 

annual irrigation demand computed from the observed record at all the sites except Ringway, which 

recorded a difference of 35 mm (equivalent to 27% difference). 
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Figure 3 Average annual irrigation demand for all seven sites modelled using the observed and 

weather generator datasets. Dotted lines indicate +/- 25mm error on observed baseline, Ringway 

is the only outstanding site. Best fit trend line is included. 

Statistical analysis, using a combination of Man Whitney U-test (MWUt) and 2-sample T test (2Tt) 

showed that the observed and weather generator values for the average annual irrigation demand 

were not significantly different at any of the investigated sites (Table 3). Significant differences were 

however recorded in the inter-annual standard deviation at two sites, Carlisle and Ringway. 

Table 3 Test for significant differences comparing observed and weather generator average annual 

irrigation demand and inter-annual standard deviation at the 95% confidence interval for all seven 

sites. 

 Average annual irrigation 

demand 
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R² = 0.8454 

0

50

100

150

200

0 50 100 150 200

 W
G

 (
m

m
) 

Observed (mm) 



  

6 October 2013  Page 14 of 24 
 

Brooms barn 2Tt 0.882 2Tt 0.809 

Carlisle 2Tt 0.095 2Tt 0.015 

Ringway 2Tt 0.063 2Tt 0.011 

Shawbury 2Tt* 0.669 2Tt 0.291 

Slaidburn MWUt 0.499 MWUt 0.355 

Terrington MWUt 0.142 2Tt 0.092 

Woburn 2Tt 0.557 2Tt 0.727 

     *Transformed data 

The observed and weather generator annual irrigation demands, plotted against probability of non-

exceedance, are shown in Figure 4. It should be noted that the discrete depths of water applied (15 

mm and 25 mm) accounts for the steps in the observed weather results, whereas these are 

smoothed out by the averaging of 300 sequences for the weather generator results.
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Figure 4 Annual irrigation demand against probability of non-exceedance for the baseline period 

for Brooms barn (a), Carlisle (b), Ringway (c), Shawbury (d) Slaidburn (e) and Terrington (f) 

comparing results from observed (X) and weather generator datasets (∆). Results for Woburn are 

shown in figure 5. 
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Hence the weather generator appears reasonably successful in modelling the annual irrigation 

demand in normal years, with the exception of at Ringway, which could be the result of an unusual 

micro-climate at this particular site. It underestimates the observed conditions during the driest 

years at the majority of the sites. This may reflect the occurrence of the extreme dry years 1975 and 

1976 in the observed dataset. Even the most extreme results in the 300 sequences did not reach the 

values for these exceptionally dry years at all sites, for example at Woburn (Figure 5). 

 

 

Figure 5 Woburn annual irrigation demand against probability of non-exceedance for the baseline 

period 1961-1990 observed (X) and weather generator average (∆) and weather generator 

max/min respectively. 80% represents the current best practice approach. 

A design dry year for allocating agricultural water resources and designing irrigation systems and 

storage reservoirs in the UK is typically taken as one with an 80% probability of non-exceedance, 

roughly equivalent to the older concept of the “fourth driest year in five” (Weatherhead & Knox 

2000). The weather generator was largely successful in replicating the observed dry year values 
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(Table 4). The average of the 300 weather sequences was within 25 mm at all but one of the sites, 

Ringway. The average weather generator value tended to be lower than the observed baseline 

value.  

Table 4 Design dry year (80% probability of non exceedance) irrigation demand (mm) for the seven 

sites for the baseline period, calculated using the observed and weather generator dataset 

respectively. 

 80% probability of non-exceedance event 

 
Observed 

Weather generator (300 sequences) 

Site Average Range Standard deviation 

Brooms barn 196 198 165-236 12 

Carlisle 121 99 71-131 11 

Ringway 170 132 105-171 12 

Shawbury 172 152 116-187 11 

Slaidburn 61 50 25-86 10 

Terrington 175 179 145-217 12 

Woburn 157 176 141-212 12 

 

The study used 300 sequences, based on the recommendations of UKCIP. Analysis showed that it is 

theoretically possible to use far fewer weather generator sequences and still remain confident that 

the average and design dry year values are reasonably reflective of the full population (Table 5). For 

estimating annual irrigation demand with a 25 mm acceptable error - at the 95% confidence interval, 

required just 2 sequences at most sites, and only 1 at Slaidburn. Decreasing the acceptable error to 

10 mm led to an increase to 4 sequences at most sites. Similar results were recorded with the 80% 

design dry year, with most sites requiring 2 sequences and 5 sequences respectively. Using the 

equation does require a degree of hindsight about the standard deviation, but this could be 
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estimated using a simple model such as WaSim, before using a more complex crop model. However, 

there are limitations to the use of this equation, and it is strongly recommended that more 

sequences than these values are used to give confidence in the results.  

Table 5 Minimum number of weather generator sequences at the 95% confidence interval, 

generated using the standard deviation of 300 weather generator sequences and an error 

coefficient of 10 mm and 25 mm respectively. 

 Average annual irrigation demand 80% percentile design dry year 

Sample size (N0) Error coefficient (e) Error coefficient (e) 

Site 10 mm 25 mm 10 mm 25 mm 

Brooms barn 4 2 5 2 

Carlisle 3 2 5 2 

Ringway 4 2 5 2 

Shawbury 4 2 5 2 

Slaidburn 2 1 4 2 

Terrington 4 2 5 2 

Woburn 4 2 5 2 

 

CONCLUSIONS 

Findings of this study first demonstrated that the version 1 of the UKCP09 weather generator 

performed poorly when replicating observed precipitation and evapotranspiration, based on both 

recorded weather station and interpolated grid data. This was unexpected considering that the 

UKCP09 weather generator was originally calibrated on the Met Office’s interpolated grid, itself 

created from the UK’s weather station network. The weather generator was noticeably worse at 

reproducing observed evapotranspiration than precipitation, while both weather generator variables 

were generally closer to the point measurements compared to the interpolated grid. 
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Nevertheless, the study has demonstrated that the weather generator was reasonably successful at 

replicating the average annual irrigation demand, the annual variation in observed irrigation demand 

and the design dry year demand (based on the 80% probability of non-exceedance event). The 

weather generator was less successful at replicating the driest years in the recorded dataset, but 

these were exceptionally dry years. Previous studies have identified similar limitations in the 

weather generator’s ability to reproduce extreme events. The UKCP09 weather generator is unable 

to recreate blocking regimes effectively, which themselves can lead to extended heat waves, 

exceptionally cold winters and droughts with obvious implications for irrigation demand modelling 

(Jones et al. 2009). While improvements have been made, large return period events should still be 

treated with caution (Harris & Bridgeman 2012). Its limited ability to recreate extreme events is 

unlikely to impact the decision making process in the irrigation context, but could be more 

significant in other applications. This study did not consider whether the UKCP09 weather generator 

could successfully reproduce observed day-to-day operations at field level (i.e. when and how often 

to undertake irrigation). However, given the highly variable day-to-day climate in the UK it is very 

unlikely that the UKCP09 weather generator would be capable of doing so, though further work is 

recommended to test the validity of this assumption. In addition, further work is recommended to 

establish whether or not later versions of the UKCP09 weather generator improve the 

reproducibility of observed conditions.  

The findings of this study have demonstrated the potential value of the weather generator as an 

alternative and potentially more accessible source of baseline daily data for irrigation and water 

resource planning, but highlight the need for caution. The generated climate data can be 

downloaded from UKCP09 in the absence of sufficient baseline data, and is particularly useful for 

sites where data is considered to be poor quality or suspect. The weather generator output also 

contains additional probabilistic climate information, represented by the variation between 

sequences in the average annual irrigation demand and 80% design dry year. This data is not 

particularly useful for analysing irrigation demand during the baseline period but would be directly 
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applicable to modelling the future (Green & Weatherhead 2013), giving some (partial) indication of 

climate variability and uncertainty. In addition, future studies using the UKCP09 weather generator 

(such as Green & Weatherhead 2013) can be considered more robust, at least at these particular 

sites, now that it has been demonstrated that the weather generator can effectively recreate the 

observed baseline demands.  

The study has also demonstrated that it is feasible to use fewer weather generator sequences and 

still remain confident that any subsequent conclusions drawn from the design dry year are reflective 

of a much larger sample, although any underlying differences with observed values will still remain. 

While determining the minimum number of sequences does require some degree of hindsight about 

the standard deviation, and is unnecessary for relatively simple models like WASIM, this should 

prove of interest to modellers using more complex models that cannot process and subsequently 

interpret the large number of weather generator sequences used in this study. 
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