1,300 research outputs found

    Ionization of helium by slow antiproton impact: total and differential cross sections

    Full text link
    We theoretically investigate the single and double ionization of the He atom by antiproton impact for projectile energies ranging from 33~keV up to 10001000~keV. We obtain accurate total cross sections by directly solving the fully correlated two-electron time-dependent Schr\"odinger equation and by performing classical trajectory Monte-Carlo calculations. The obtained quantum-mechanical results are in excellent agreement with the available experimental data. Along with the total cross sections, we also present the first fully \textit{ab initio} doubly differential data for single ionization at 10 and 100~keV impact energies. In these differential cross sections we identify the binary-encounter peak along with the anticusp minimum. Furthermore, we also point out the importance of the post-collisional electron-projectile interaction at low antiproton energies which significantly suppresses electron emission in the forward direction

    Biodiversity, distribution and patterns of extinction of the last odontopleurid tilobites during the Devonian (Givetian, Frasnian)

    Get PDF
    Biostratigraphical ranges and palaeogeographical distribution of mid-Givetian to end-Frasnian odontopleurids are investigated. The discovery of Leonaspis rhenohercynica sp. nov. in mid-Givetian strata extends this genus unexpectedly up to the late Middle Devonian. New material of Radiaspis radiata (Goldfuss, 1843) and the first koneprusiine in Britain, Koneprusia? sp., are described from the famous Lummaton shell-bed, Torquay, Devon. New taxa of Koneprusia, K. serrensis, K. aboussalamae, K. brevispina, and K. sp. A and K. sp. B are defined. Ceratocephala (Leonaspis) harborti Richter & Richter, 1926, is revised and reassigned to Gondwanaspis Feist, 2002. Two new species of Gondwanaspis, G. dracula and G. spinosa, plus three others left in open nomenclature, are described from the late Frasnian of Western Australia. A further species of Gondwanaspis, G. prisca, is described from the early Frasnian of Montagne Noire. Species of Gondwanaspis are shown to possess a number of paedomorphic features. A functional analysis suggests that, unlike other odontopleurids, Gondwanaspis actively fed and rested with the same cephalic orientation. The sole odontopleurid survivors of the severe terminal mid-Givetian biocrisis (‘Taghanic Event’) belong to the koneprusiine Koneprusia in the late Givetian and Frasnian, and, of cryptogenic origin, the acidaspidine Gondwanaspis in the Frasnian. Whereas the former became extinct in the late Frasnian at the Lower Kellwasser Event, the latter disappeared, and with it the entire Odontopleuroidea, at the terminal Frasnian Upper Kellwasser global biocrisis

    Thermalization and Cooling of Plasmon-Exciton Polaritons: Towards Quantum Condensation

    Get PDF
    We present indications of thermalization and cooling of quasi-particles, a precursor for quantum condensation, in a plasmonic nanoparticle array. We investigate a periodic array of metallic nanorods covered by a polymer layer doped with an organic dye at room temperature. Surface lattice resonances of the array---hybridized plasmonic/photonic modes---couple strongly to excitons in the dye, and bosonic quasi-particles which we call plasmon-exciton-polaritons (PEPs) are formed. By increasing the PEP density through optical pumping, we observe thermalization and cooling of the strongly coupled PEP band in the light emission dispersion diagram. For increased pumping, we observe saturation of the strong coupling and emission in a new weakly coupled band, which again shows signatures of thermalization and cooling.Comment: 8 pages, 5 figures including supplemental material. The newest version includes new measurements and corrections to the interpretation of the result

    The CALD Youth Census Report 2014

    Get PDF
    The first Australian census data analysis of young people from culturally and linguistically diverse backgroundsProfessor Graeme Hugo, Dr Kelly McDougall, Dr George Tan, Dr Helen Feis

    Probing scattering phase shifts by attosecond streaking

    Full text link
    Attosecond streaking is one of the most fundamental processes in attosecond science allowing for a mapping of temporal (i.e. phase) information on the energy domain. We show that on the single-particle level attosecond streaking time shifts contain spectral phase information associated with the Eisenbud-Wigner-Smith (EWS) time delay, provided the influence of the streaking infrared field is properly accounted for. While the streaking phase shifts for short-ranged potentials agree with the associated EWS delays, Coulomb potentials require special care. We show that the interaction between the outgoing electron and the combined Coulomb and IR laser fields lead to a streaking phase shift that can be described classically

    Ramsey-type phase control of free-electron beams

    Get PDF
    Quantum coherent evolution, interference between multiple distinct paths and phase-controlled sequential interactions are the basis for powerful multi-dimensional optical and nuclear magnetic resonance3 spectroscopies, including Ramsey’s method of separated fields. Recent developments in the quantum state preparation of free electrons suggest a transfer of such concepts to ultrafast electron imaging and spectroscopy. Here, we demonstrate the sequential coherent manipulation of free-electron superposition states in an ultrashort electron pulse, using nanostructures featuring two spatially separated near-fields with polarization anisotropy. The incident light polarization controls the relative phase of these near-fields, yielding constructive and destructive quantum interference of the subsequent interactions. Future implementations of such electron–light interferometers may provide access to optically phase-resolved electronic dynamics and dephasing mechanisms with attosecond precision
    corecore