289 research outputs found

    Metabarcoding of shrimp stomach content: harnessing a natural sampler for fish biodiversity monitoring

    Get PDF
    This is the peer reviewed version of the following article: Siegenthaler, A., Wangensteen Fuentes, O.S., Soto, A.Z., Benvenuto, C., Corrigan, L, & Mariani, S. (2018). Metabarcoding of shrimp stomach content: harnessing a natural sampler for fish biodiversity monitoring. Molecular Ecology Resources. https://doi.org/10.1111/1755-0998.12956, which has been published in final form at https://doi.org/10.1111/1755-0998.12956. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.Given their positioning and biological productivity, estuaries have long represented key providers of ecosystem services, and consequently remain under remarkable pressure from numerous forms of anthropogenic impact. The monitoring of fish communities in space and time are one of the most widespread and established approaches to assess the ecological status of estuaries and other coastal habitats, but traditional fish surveys are invasive, costly, labour intensive and highly selective. Recently, the application of metabarcoding techniques, on either sediment or aqueous environmental DNA, has rapidly gained popularity. Here, we evaluate the application of a novel, high through‐put DNA‐based monitoring tool to assess fish diversity, based on the analysis of the gut contents of a generalist predator/scavenger, the European brown shrimp, Crangon crangon. Sediment and shrimp samples were collected from eight European estuaries and DNA metabarcoding (using both 12S and COI markers) was carried out to infer fish assemblage composition. We detected 32 teleost species (16 and 20, for 12S and COI respectively). Twice as many species were recovered using metabarcoding than by traditional net surveys. By comparing and interweaving trophic, environmental DNA and traditional survey‐based techniques, we show that the DNA‐assisted gut content analysis of a ubiquitous, easily accessible, generalist species may serve as a powerful, rapid and cost‐effective tool for large scale, routine estuarine biodiversity monitoring

    Do native brown trout and non-native brook trout interact reproductively?

    Get PDF
    Reproductive interactions between native and non-native species of fish have received little attention compared to other types of interactions such as predation or competition for food and habitat. We studied the reproductive interactions between non-native brook trout (Salvelinus fontinalis) and native brown trout (Salmo trutta) in a Pyrenees Mountain stream (SW France). We found evidence of significant interspecific interactions owing to consistent spatial and temporal overlap in redd localizations and spawning periods. We observed mixed spawning groups composed of the two species, interspecific subordinate males, and presence of natural hybrids (tiger trout). These reproductive interactions could be detrimental to the reproduction success of both species. Our study shows that non-native species might have detrimental effects on native species via subtle hybridization behavior

    Headwater Influences on Downstream Water Quality

    Get PDF
    We investigated the influence of riparian and whole watershed land use as a function of stream size on surface water chemistry and assessed regional variation in these relationships. Sixty-eight watersheds in four level III U.S. EPA ecoregions in eastern Kansas were selected as study sites. Riparian land cover and watershed land use were quantified for the entire watershed, and by Strahler order. Multiple regression analyses using riparian land cover classifications as independent variables explained among-site variation in water chemistry parameters, particularly total nitrogen (41%), nitrate (61%), and total phosphorus (63%) concentrations. Whole watershed land use explained slightly less variance, but riparian and whole watershed land use were so tightly correlated that it was difficult to separate their effects. Water chemistry parameters sampled in downstream reaches were most closely correlated with riparian land cover adjacent to the smallest (first-order) streams of watersheds or land use in the entire watershed, with riparian zones immediately upstream of sampling sites offering less explanatory power as stream size increased. Interestingly, headwater effects were evident even at times when these small streams were unlikely to be flowing. Relationships were similar among ecoregions, indicating that land use characteristics were most responsible for water quality variation among watersheds. These findings suggest that nonpoint pollution control strategies should consider the influence of small upland streams and protection of downstream riparian zones alone is not sufficient to protect water quality

    Developing User‐Friendly Habitat Suitability Tools from Regional Stream Fish Survey Data

    Full text link
    We developed user‐friendly fish habitat suitability tools (plots) for fishery managers in Michigan; these tools are based on driving habitat variables and fish population estimates for several hundred stream sites throughout the state. We generated contour plots to show patterns in fish biomass for over 60 common species (and for 120 species grouped at the family level) in relation to axes of catchment area and low‐flow yield (90% exceedance flow divided by catchment area) and also in relation to axes of mean and weekly range of July temperatures. The plots showed distinct patterns in fish habitat suitability at each level of biological organization studied and were useful for quantitatively comparing river sites. We demonstrate how these plots can be used to support stream management, and we provide examples pertaining to resource assessment, trout stocking, angling regulations, chemical reclamation of marginal trout streams, indicator species, instream flow protection, and habitat restoration. These straightforward and effective tools are electronically available so that managers can easily access and incorporate them into decision protocols and presentations.Received April 9, 2010; accepted November 8, 2010Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141005/1/nafm0041.pd

    HPV vaccine: an overview of immune response, clinical protection, and new approaches for the future

    Get PDF
    Although long-term protection is a key-point in evaluating HPV-vaccine over time, there is currently inadequate information on the duration of HPV vaccine-induced immunity and on the mechanisms related to the activation of immune-memory. Longer-term surveillance in a vaccinated population is needed to identify waning immunity, evaluating any requirements for booster immunizations to assess vaccine efficacy against HPV-diseases. Current prophylactic vaccines have the primary end-points to protect against HPV-16 and 18, the genotypes more associated to cervical cancer worldwide. Nevertheless, data from many countries demonstrate the presence, at significant levels, of HPVs that are not included in the currently available vaccine preparations, indicating that these vaccines could be less effective in a particular area of the world. The development of vaccines covering a larger number of HPVs presents the most complex challenge for the future. Therefore, long term immunization and cross-protection of HPV vaccines will be discussed in light of new approaches for the future

    PIT telemetry as a method to study the habitat requirements of fish populations: application to native and stocked trout movements

    Get PDF
    Passive integrated transponder (PIT) technology was used to study the behaviour of fishes during the summer season in two headwater streams of northeastern Portugal. A total of 71 PIT tags (12 mm long x 2.1 mm diameter) were surgically implanted in 1+ stocked (39) and native (32) brown trout of two size classes (< 20.0 and ≥ 20.0 cm). Eight independent antennae, connected to a multi-point decoder (MPD reader) unit, were placed in different microhabitats, selected randomly every three days during the observation period (29 August to 9 September in Baceiro stream and 19 September to 4 October in Sabor stream). The results confirmed this method as a suitable labour efficient tool to assess the movement and habitat use of sympatric stocked and native trout populations. About 76.9% of stocked and 59.4% of native PIT tagged trouts were detected. Multivariate techniques (CCA, DFA and classification tree) showed a separation in habitat use between the two sympatric populations. Stocked trout mainly used the microhabitats located in the middle of the channel with higher depths and without cover. Furthermore, these fishes displayed a greater mobility and a diel activity pattern different to native trout populations

    Population Response to Habitat Fragmentation in a Stream-Dwelling Brook Trout Population

    Get PDF
    Fragmentation can strongly influence population persistence and expression of life-history strategies in spatially-structured populations. In this study, we directly estimated size-specific dispersal, growth, and survival of stream-dwelling brook trout in a stream network with connected and naturally-isolated tributaries. We used multiple-generation, individual-based data to develop and parameterize a size-class and location-based population projection model, allowing us to test effects of fragmentation on population dynamics at local (i.e., subpopulation) and system-wide (i.e., metapopulation) scales, and to identify demographic rates which influence the persistence of isolated and fragmented populations. In the naturally-isolated tributary, persistence was associated with higher early juvenile survival (∼45% greater), shorter generation time (one-half) and strong selection against large body size compared to the open system, resulting in a stage-distribution skewed towards younger, smaller fish. Simulating barriers to upstream migration into two currently-connected tributary populations caused rapid (2–6 generations) local extinction. These local extinctions in turn increased the likelihood of system-wide extinction, as tributaries could no longer function as population sources. Extinction could be prevented in the open system if sufficient immigrants from downstream areas were available, but the influx of individuals necessary to counteract fragmentation effects was high (7–46% of the total population annually). In the absence of sufficient immigration, a demographic change (higher early survival characteristic of the isolated tributary) was also sufficient to rescue the population from fragmentation, suggesting that the observed differences in size distributions between the naturally-isolated and open system may reflect an evolutionary response to isolation. Combined with strong genetic divergence between the isolated tributary and open system, these results suggest that local adaptation can ‘rescue’ isolated populations, particularly in one-dimensional stream networks where both natural and anthropogenically-mediated isolation is common. However, whether rescue will occur before extinction depends critically on the race between adaptation and reduced survival in response to fragmentation

    Parasites of non-native freshwater fishes introduced into england and wales suggest enemy release and parasite acquisition

    Get PDF
    When non-native species are introduced into a new range, their parasites can also be introduced, with these potentially spilling-over into native hosts. However, in general, evidence suggests that a high proportion of their native parasites are lost during introduction and infections by some new parasites from the native range might occur, potentially resulting in parasite spill-back to native species. These processes were investigated here using parasite surveys and literature review on seven non-native freshwater fishes introduced into England and Wales. Comparison of the mean numbers of parasite species and genera per population for each fish species England andWaleswith their native ranges revealed\9 % of the native parasite fauna were present in their populations in England and Wales. There was no evidence suggesting these introduced parasites had spilled over into sympatric native fishes. The non-native fishes did acquire parasites following their introduction, providing potential for parasite spill-back to sympatric fishes, and resulted in non-significant differences in overall mean numbers of parasites per populations between the two ranges. Through this acquisition, the non-native fishes also had mean numbers of parasite species and genera per population that were not significantly different to sympatric native fishes. Thus, the non-native fishes in England and Wales showed evidence of enemy release, acquired new parasites following introduction providing potential for spill-back, but showed no evidence of parasite spill-over

    Seasonal Movement and Distribution of Fluvial Adult Bull Trout in Selected Watersheds in the Mid-Columbia River and Snake River Basins

    Get PDF
    From 1997 to 2004, we used radio telemetry to investigate movement and distribution patterns of 206 adult fluvial bull trout (mean, 449 mm FL) from watersheds representing a wide range of habitat conditions in northeastern Oregon and southwestern Washington, a region for which there was little previous information about this species. Migrations between spawning and wintering locations were longest for fish from the Imnaha River (median, 89 km) and three Grande Ronde River tributaries, the Wenaha (56 km) and Lostine (41 km) rivers and Lookingglass Creek (47 km). Shorter migrations were observed in the John Day (8 km), Walla Walla (20 km) and Umatilla river (22 km) systems, where relatively extensive human alterations of the riverscape have been reported. From November through May, fish displayed station-keeping behavior within a narrow range (basin medians, 0.5–6.2 km). Prespawning migrations began after snowmelt-driven peak discharge and coincided with declining flows. Most postspawning migrations began by late September. Migration rates of individuals ranged from 0.1 to 10.7 km/day. Adults migrated to spawning grounds in consecutive years and displayed strong fidelity to previous spawning areas and winter locations. In the Grande Ronde River basin, most fish displayed an unusual fluvial pattern: After exiting the spawning tributary and entering a main stem river, individuals moved upstream to wintering habitat, often a substantial distance (maximum, 49 km). Our work provides additional evidence of a strong migratory capacity in fluvial bull trout, but the short migrations we observed suggest adult fluvial migration may be restricted in basins with substantial anthropogenic habitat alteration. More research into bull trout ecology in large river habitats is needed to improve our understanding of how adults establish migration patterns, what factors influence adult spatial distribution in winter, and how managers can protect and enhance fluvial populations

    Indicators of river system hydromorphological character and dynamics: understanding current conditions and guiding sustainable river management

    Get PDF
    The work leading to this paper received funding from the EU’s FP7 programme under Grant Agreement No. 282656 (REFORM). The Indicators were developed within the context of REFORM deliverable D2.1, therefore all partners involved in this deliverable contributed to some extent to their discussion and development
    corecore