139 research outputs found

    Applications of vortex gas models to tornadogenesis and maintenance

    Get PDF
    Processes related to the production of vorticity in the forward and rear flank downdrafts and their interaction with the boundary layer are thought to play a role in tornadogenesis. We argue that an inverse energy cascade is a plausible mechanism for tornadogenesis and tornado maintenance and provide supporting evidence which is both numerical and observational. We apply a three-dimensional vortex gas model to supercritical vortices produced at the surface boundary layer possibly due to interactions of vortices brought to the surface by the rear flank downdraft and also to those related to the forward flank downdraft. Two-dimensional and three-dimensional vortex gas models are discussed, and the three-dimensional vortex gas model of Chorin, developed further by Flandoli and Gubinelli, is proposed as a model for intense small- scale subvortices found in tornadoes and in recent numerical studies by Orf et al. In this paper, the smaller scales are represented by intense, supercritical vortices, which transfer energy to the larger-scale tornadic flows (inverse energy cascade). We address the formation of these vortices as a result of the interaction of the flow with the surface and a boundary layer.Comment: 20 pages, 6 figure

    Meaningful engagement of patients and families in a complex trial of advance care planning in primary care

    Get PDF
    Engagement of Patient and Family Advisors (PFAs) is increasingly recommended as best practice in research. During the design and conduct of a large trial of advance care planning (ACP) in primary care, we expanded on the funder’s (Patient-Centered Outcomes Research Institute®) requirement for an engagement plan and sought to develop an innovative approach to fostering and sustaining meaningful engagement of PFAs throughout all phases of the trial. Structures were developed that integrated PFAs into planning and provided the foundation for their ongoing participation. A continuous quality improvement approach became the framework for ongoing engagement. This involved setting goals; collecting data through surveys, interviews, and observations; and using data to inform revisions to the engagement approach. We also tracked PFA activities and ideas and documented how they impacted the trial. This article summarizes our experience and describes the challenges we faced and how we addressed them. We also outline key lessons learned about encouraging participation; approaches to preparation and coaching; fostering equity across PFAs and other roles in the trial team; creating a range of opportunities that match PFA skills, preferences, and expectations; the importance of regular feedback; and the need for training of all trial staff. Our experience demonstrates that successful and impactful engagement is possible but requires consistent commitment and intentional dedication of sufficient resources. Experience Framework This article is associated with the Patient, Family & Community Engagement lens of The Beryl Institute Experience Framework (https://theberylinstitute.org/experience-framework/). Access other PXJ articles related to this lens. Access other resources related to this lens

    Applications of a vortex gas models to tornadogenesis and maintenance

    Get PDF
    Processes related to the production of vorticity in the forward and rear flank downdrafts and their interaction with the boundary layer are thought to play a role in tornadogenesis. We argue that an inverse energy cascade is a plausible mechanism for tornadogenesis and tornado maintenance and provides supporting evidence which is both numerical and observational. We apply a three-dimensional vortex gas model to supercritical vortices produced at the surface boundary layer possibly due to interactions of vortices brought to the surface by the rear flank downdraft and also to those related to the forward flank downdraft. Two-dimensional and three-dimensional vortex gas models are discussed, and the three-dimensional vortex gas model of Chorin, developed further by Flandoli and Gubinelli, is proposed as a model for intense small-scale subvortices found in tornadoes and in recent numerical studies by Orf et al. In this paper, the smaller scales are represented by intense, supercritical vortices, which transfer energy to the larger-scale tornadic flows (inverse energy cascade). We address the formation of these vortices as a result of the interaction of the flow with the surface and a boundary layer

    U.S. GLOBAL CHANGE RESEARCH PROGRAM CLIMATE SCIENCE SPECIAL REPORT (CSSR)

    Get PDF
    Fifth-Order Draft Table of Contents Front Matter About This Report........................................................................................ 1 Guide to the Report......................................................................................4 Executive Summary ................................................................................... 12 Chapters 1. Our Globally Changing Climate .......................................................... 38 2. Physical Drivers of Climate Change ................................................... 98 3. Detection and Attribution of Climate Change .................................... 160 4. Climate Models, Scenarios, and Projections .................................... 186 5. Large-Scale Circulation and Climate Variability ................................ 228 6. Temperature Changes in the United States ...................................... 267 7. Precipitation Change in the United States ......................................... 301 8. Droughts, Floods, and Hydrology ......................................................... 336 9. Extreme Storms ....................................................................................... 375 10. Changes in Land Cover and Terrestrial Biogeochemistry ............ 405 11. Arctic Changes and their Effects on Alaska and the Rest of the United States..... 443 12. Sea Level Rise ....................................................................................... 493 13. Ocean Acidification and Other Ocean Changes .............................. 540 14. Perspectives on Climate Change Mitigation .................................... 584 15. Potential Surprises: Compound Extremes and Tipping Elements .......... 608 Appendices A. Observational Datasets Used in Climate Studies ............................. 636 B. Weighting Strategy for the Fourth National Climate Assessment ................ 642 C. Detection and Attribution Methodologies Overview ............................ 652 D. Acronyms and Units ................................................................................. 664 E. Glossary ...................................................................................................... 66

    U.S. GLOBAL CHANGE RESEARCH PROGRAM CLIMATE SCIENCE SPECIAL REPORT (CSSR)

    Get PDF
    Fifth-Order Draft Table of Contents Front Matter About This Report........................................................................................ 1 Guide to the Report......................................................................................4 Executive Summary ................................................................................... 12 Chapters 1. Our Globally Changing Climate .......................................................... 38 2. Physical Drivers of Climate Change ................................................... 98 3. Detection and Attribution of Climate Change .................................... 160 4. Climate Models, Scenarios, and Projections .................................... 186 5. Large-Scale Circulation and Climate Variability ................................ 228 6. Temperature Changes in the United States ...................................... 267 7. Precipitation Change in the United States ......................................... 301 8. Droughts, Floods, and Hydrology ......................................................... 336 9. Extreme Storms ....................................................................................... 375 10. Changes in Land Cover and Terrestrial Biogeochemistry ............ 405 11. Arctic Changes and their Effects on Alaska and the Rest of the United States..... 443 12. Sea Level Rise ....................................................................................... 493 13. Ocean Acidification and Other Ocean Changes .............................. 540 14. Perspectives on Climate Change Mitigation .................................... 584 15. Potential Surprises: Compound Extremes and Tipping Elements .......... 608 Appendices A. Observational Datasets Used in Climate Studies ............................. 636 B. Weighting Strategy for the Fourth National Climate Assessment ................ 642 C. Detection and Attribution Methodologies Overview ............................ 652 D. Acronyms and Units ................................................................................. 664 E. Glossary ...................................................................................................... 66

    Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change

    Get PDF
    This Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX) has been jointly coordinated by Working Groups I (WGI) and II (WGII) of the Intergovernmental Panel on Climate Change (IPCC). The report focuses on the relationship between climate change and extreme weather and climate events, the impacts of such events, and the strategies to manage the associated risks. The IPCC was jointly established in 1988 by the World Meteorological Organization (WMO) and the United Nations Environment Programme (UNEP), in particular to assess in a comprehensive, objective, and transparent manner all the relevant scientific, technical, and socioeconomic information to contribute in understanding the scientific basis of risk of human-induced climate change, the potential impacts, and the adaptation and mitigation options. Beginning in 1990, the IPCC has produced a series of Assessment Reports, Special Reports, Technical Papers, methodologies, and other key documents which have since become the standard references for policymakers and scientists.This Special Report, in particular, contributes to frame the challenge of dealing with extreme weather and climate events as an issue in decisionmaking under uncertainty, analyzing response in the context of risk management. The report consists of nine chapters, covering risk management; observed and projected changes in extreme weather and climate events; exposure and vulnerability to as well as losses resulting from such events; adaptation options from the local to the international scale; the role of sustainable development in modulating risks; and insights from specific case studies

    Sea-ice dynamics in an Arctic coastal polynya during the past 6500 years

    Get PDF
    The production of high-salinity brines during sea-ice freezing in circum-arctic coastal polynyas is thought to be part of northern deep water formation as it supplies additional dense waters to the Atlantic meridional overturning circulation system. To better predict the effect of possible future summer ice-free conditions in the Arctic Ocean on global climate, it is important to improve our understanding of how climate change has affected sea-ice and brine formation, and thus finally dense water formation during the past. Here, we show temporal coherence between sea-ice conditions in a key Arctic polynya (Storfjorden, Svalbard) and patterns of deep water convection in the neighbouring Nordic Seas over the last 6500 years. A period of frequent sea-ice melting and freezing between 6.5 and 2.8 ka BP coincided with enhanced deep water renewal in the Nordic Seas. Near-permanent sea-ice cover and low brine rejection after 2.8 ka BP likely reduced the overflow of high-salinity shelf waters, concomitant with a gradual slow down of deep water convection in the Nordic Seas, which occurred along with a regional expansion in sea-ice and surface water freshening. The Storfjorden polynya sea-ice factory restarted at ~0.5 ka BP, coincident with renewed deep water penetration to the Arctic and climate amelioration over Svalbard. The identified synergy between Arctic polynya sea-ice conditions and deep water convection during the present interglacial is an indication of the potential consequences for ocean ventilation during states with permanent sea-ice cover or future Arctic ice-free conditions

    Stability of North Atlantic water masses in face of pronounced climate variability during the Pleistocene

    Get PDF
    Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 19 (2004): PA2008, doi:10.1029/2003PA000921.Geochemical profiles from the North Atlantic Ocean suggest that the vertical δ13C structure of the water column at intermediate depths did not change significantly between glacial and interglacial time over much of the Pleistocene, despite large changes in ice volume and iceberg delivery from nearby landmasses. The most anomalous δ13C profiles are from the extreme interglaciations of the late Pleistocene. This compilation of data suggests that, unlike today (an extreme interglaciation), the two primary sources of northern deep water, Norwegian-Greenland Sea and Labrador Sea/subpolar North Atlantic, had different characteristic δ13C values over most of the Pleistocene. We speculate that the current open sea ice conditions in the Norwegian-Greenland Sea are a relatively rare occurrence and that the high-δ13C deep water that forms in this region today is geologically unusual. If northern source deep waters can have highly variable δ13C, then this likelihood must be considered when inferring past circulation changes from benthic δ13C records.National Science Foundation grants OCE-0118005 and OCE-0118001, which supported MER and DWO
    • …
    corecore