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Abstract 
Processes related to the production of vorticity in the forward and rear flank 
downdrafts and their interaction with the boundary layer are thought to play a 
role in tornadogenesis. We argue that an inverse energy cascade is a plausible 
mechanism for tornadogenesis and tornado maintenance and provides sup-
porting evidence which is both numerical and observational. We apply a 
three-dimensional vortex gas model to supercritical vortices produced at the 
surface boundary layer possibly due to interactions of vortices brought to the 
surface by the rear flank downdraft and also to those related to the forward 
flank downdraft. Two-dimensional and three-dimensional vortex gas models 
are discussed, and the three-dimensional vortex gas model of Chorin, devel-
oped further by Flandoli and Gubinelli, is proposed as a model for intense 
small-scale subvortices found in tornadoes and in recent numerical studies by 
Orf et al. In this paper, the smaller scales are represented by intense, super-
critical vortices, which transfer energy to the larger-scale tornadic flows (in-
verse energy cascade). We address the formation of these vortices as a result of 
the interaction of the flow with the surface and a boundary layer. 
 

Keywords 
Vortex Gas, Negative Temperature, Supercritical Vortices, Inverse Energy 
Cascade, Tornadogenesis, Tornado Maintenance 

 

1. Introduction 

In classical statistical mechanics and thermodynamics, one attempts to explain 
the macroscopic behavior of gases by using the statistics of modeled microscopic 
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behavior of the individual gas molecules and their interactions. In analogy with this 
theory, the interaction of large numbers of vortices in two- and three-dimensional 
space has been studied by modeling the vortices as part of a vortex gas. This 
theory has its origins in the 19th century in the works of Helmhotz [1] and Kel-
vin [2]. Onsager [3] first introduced the notion of entropy and temperature for 
vortex gases that is different from the usual notions of entropy and temperature 
of gases of molecules, and formulated a two-dimensional theory. In the statistical 
mechanics context, negative temperatures are higher than positive temperatures. 
In the two-dimensional vortex gas case, the molecules are replaced by point vor-
tices; in the three-dimensional case, they could be arching vortex lines (tubes) or 
segments of a single vortex (in a collection of several vortices). In both these 
cases, negative temperatures are conceivable. The three-dimensional vortex gas 
model of Chorin [4] [5] [6], developed further by Flandoli and Gubinelli [7], can 
be applied to model the behavior of intense three-dimensional vortices anchored 
at the surface, and thus it can contribute to the understanding of the processes of 
tornadogenesis and maintenance. 

It is generally accepted that the process of tornadogenesis involves vortices 
generated baroclinically by the rear flank downdraft that are then turned into the 
vertical (see e.g. [8] [9]) and then potentially anchored at the surface. Recent 
numerical simulations of Orf [10] [11] indicate two potentially important factors 
contributing to tornadogenesis: 1) consolidation of vertical vortices generated 
along the forward flank downdraft boundary and anchored at the surface that 
enter and strengthen the developing tornado; and 2) a streamwise current of ho-
rizontally generated vorticity that is tilted upward into the low-level mesocyc-
lone. Sasaki [12] proposed a theory of the balance of thermodynamic entropy to 
explain the process of the generation of vorticity in the parent supercell storm, 
the related development of rotation at the surface, and the subsequent formation 
and maintenance of a tornado; as the surface tornado development takes place, 
the vorticity becomes dominated by barotropic vorticity. 

In this paper we attempt to provide a more detailed study of the development 
of rotation at the surface and the subsequent tornadogenesis and maintenance. 
The main idea in this paper is the inverse energy cascade supported by vortex 
gas models, whereby the energy from small-scale, intense vortices is transferred 
to the large-scale tornadic flow. This process would support tornadogenesis and 
tornado maintenance. Lewellen and Sheng [13] argue that these intense vortices 
within the tornado circulation can be interpreted as turbulent eddies. As a con-
sequence of this study, Wilhelmson and Wicker [14] noted that the turbulent 
eddies represented a significant portion of the kinetic energy of the flow. In a 
modeling study, Fielder [15] found that such steady vortices can produce 
wind-speeds roughly twice the thermodynamic speed limit, while non-steady 
transient vortices can produce velocities six times the thermodynamic speed 
limit. In the context of three-dimensional turbulence, Chorin [4] [5] [6] argues 
that intense vortices have negative temperature. A vortex is said to have negative 
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temperature in the statistical mechanics sense if an increase in energy of the sys-
tem results in a decrease in its entropy. We draw a parallel between the large ed-
dies used to represent intense vortices in tornadoes and negative-temperature 
vortices in turbulent flows. That is, we argue that the small-scale, intense vortices 
in tornadic flows have negative temperature, presumably higher than that of the 
ambient vortex; consequently, they transfer energy to the surrounding flow and 
at the same time increase their own entropy. In this process, these intense vor-
tices fold and kink up tightly, and dissipate. The result is the intensification of 
the surrounding tornadic flow, thus potentially leading to tornadogenesis or 
contributing to the energy maintenance or intensification of the existing torna-
do. Similar observations have been made in the early simulations of Orf et al. 
[10] [11]. Also, recent work of [16] suggests that a significant amount of the 
perturbation energy in tornadoes is due to stretching of asymmetries by the up-
draft near the surface, “bringing the flow closer to solid body rotation”, further 
supporting the idea of an inverse energy cascade. 

In [17] bifurcation theory is applied to a non-rotating updraft by perturbing 
the updraft with a rotating eddy and the updraft acquires rotation, the vorticity 
generated by the perturbations is focused, and a vortex forms. The model they 
use is based on Serrin’s swirling vortex [18]. They apply bifurcation theory de-
veloped by Temam [19] to study the Taylor-Couette flow. This appears to be 
similar to the process observed in the numerical simulations of Orf [10] [11], 
whereby tornadogenesis is initiated by the infusion of a sequence of vortices 
(eddies) from the forward flank region of the storm into the region below the 
mesocyclone updraft. 

Our general framework is to use a Lagrange multiplier argument to maxim-
ize entropy of a collection of vortices or a single, isolated vortex. The result is, 
among other things, a temperature of such a system, the maximum entropy, 
and other relevant Lagrange multiplier(s). A system in equilibrium has maxi-
mum entropy. Locally in time a system would adjust to equilibrium (subject to 
the constraints). When a system interacts with another system, the entropy of 
the combined system would adjust. We make an assumption of finite energy 
levels (or a bounded range) which is reasonable for a bounded system. This 
allows the possibility of negative temperatures for a vortex system and a single 
vortex in three dimensions. We believe that the process of adjustment to 
maximum entropy and the notion of negative temperature apply to tornadoes 
in general. 

The process we describe may augment and clarify other tornado-related 
processes. This process is highly discrete and not microscopic. The tracks of the 
suction vortices (supercritical vortices) in a tornado reveal that the number of 
vortices is not very large. One could speculate that there are a large number of 
such vortices at a microscopic scale (analogous to the carbonated-water tornado 
vortex model, see Turner and Lilly [20]), but we are not doing that. The super-
critical vortices are not really microscopic, though they are relatively small and 
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have a high energy density. The vortex gas theory is about the raising of or 
maintaining the temperature of the tornado through an interaction with high-
er-temperature supercritical vortices. The image of many very small microscopic 
vortices bombarding the tornado is not what we are trying to convey, but rather 
it is a more discrete and slower process modeling the interaction of discrete suc-
tion vortices with a larger tornadic or pre-tornadic flow. 

Besides the computational evidence, there is also empirical evidence of the ex-
istence of such high-intensity vortices. Some are shown in Figure 1 and dis-
cussed in [21], for example. Tracks left behind by such vortices within a tornado  
 

 
Figure 1. Tracks left in corn fields showing vortices spiraling into tornadoes and then 
dissipating. Locations and dates of occurrences are: (a) Decatur, Illinois tornado, 3 April 
1974; (b) Magnet, Nebraska tornado, 6 May 1975; (c) Homer Lake, Indiana tornado, 3 
April 1974; (d) Dubuque, Iowa tornado, 28 September 1972; (e) and (f) Pearsall, Texas 
tornado, 15 April 1973; (g) Mattoon Lake, Illinois tornado, 21 August 1977; (h) Grand 
Island, Nebraska tornado, 3 June 1980. © AMS, [21]. 
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could be as narrow as 30 cm, too small to be detected with current radar tech-
nology. Some of these paths appear to originate outside the tornado and intensi-
fy as they move into the tornado. We identify these vortices as supercritical in 
the sense of Fiedler and Rotunno [22], and based on their analysis and the works 
of Barcilon, Burggraf and Benjamin [23] [24] [25] we will argue that they have 
negative temperature. This will be based on the observation that as the angular 
momentum increases, the energy density of the supercritical vortex increases, 
and its entropy density, viewed as a randomness in the vortex, decreases. 

In this paper, we review many theoretical concepts from statistical mechanics 
that have been applied to fluids and interpret them in the context of tornadoes. In 
particular, we discuss the concepts of negative temperature, two- and three-di- 
mensional vortex gas models, and the inverse energy cascade. We also suggest 
ways in which these concepts help to explain tornadogenesis and maintenance. 

We organize the paper as follows. In Section 2 we discuss the background flu-
id mechanics and the notion of “supercritical” suction vortices. We briefly dis-
cuss their characteristics and origin, and provide some heuristic arguments for 
the later sections. 

In Section 3 we introduce a statistical mechanics approach to describe vortex 
gases, which is applicable in both two and three dimensions. Our primary goal is 
to use this idea in three dimensions. We note that we are not using any 
two-dimensional statistical mechanics assumptions and that the argument works 
for three-dimensional vortices. To achieve the generality needed for the rest of 
the paper, we consider a system in which microstates can be associated with a fi-
nite number (or range) of levels of relevant physical macroscopic quantities, and 
discuss a Lagrange multipliers approach that allows one to introduce the notion 
of negative temperature in the system. 

In Section 4 we first introduce the two-dimensional vortex gas model with 
“particles” of the system being point vortices in the plane, and discuss the beha-
vior of some such systems, both with positive and negative temperature. 

In Section 5 we review several models for vortex gases in three dimensions. 
We first discuss models for nearly parallel vortices and then focus on models 
that allow vortices to stretch, fold, and dissipate. This notion will be important 
in the context of the behavior of supercritical vortices in larger tornadic flows, 
which is discussed in Section 6. In Section 6 we also discuss the notion of entro-
py, energy, and temperature of interacting systems, starting from a classical 
point of view of Landau and Lifshitz [26]. We discuss the similarities between 
supercritical vortices in tornado vortex chambers and in nature, and argue that 
the supercritical vortices may provide a mechanism for both the maintenance as 
well as the genesis of a tornado. 

Conclusions and further discussion are presented in Section 7. 

2. Background and Suction Vortices 

Fluid flows with large Reynolds numbers are modeled using Euler’s equations 
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that relate the velocity, pressure, and density of the fluid and omit the negligible 
viscosity effects. A typical assumption is that the flow is incompressible, i.e., the 
velocity field is divergence free. It can be shown theoretically that an isentropic 
flow is nearly incompressible if the flow speeds, or the local changes in flow 
speeds, along streamlines are small compared to the speed of sound of the me-
dium [27]. Numerical simulations of Xia, W. S. Lewellen and D. Lewellen [28] 
show agreement of results for intense tornadic compressible and incompressible 
isentropic flows. In what follows, we will thus assume the flow is incompressible. 

The governing equations for an incompressible fluid flow are 

( ) 1 ,D p
Dt t ρ

∂
= + ⋅∇ = − ∇ +
∂

u u u u b                  (2.1) 

0,∇ ⋅ =u                            (2.2) 

0,D
Dt
ρ
=                            (2.3) 

where u  is the fluid’s velocity, ρ  is the fluid’s mass density, p  is its pressure, 
and b  is an external body force. Here (2.1) represents balance of momentum, 
(2.2) incompressibility of the flow, and (2.3) conservation of mass. 

Let ξ  denote the vorticity of u , i.e., curl= = ∇×u uξ . Assuming a 
conservative body force, ∇× =b 0 , one can obtain an equation for ξ  
(vorticity equation),  

( ) 2

1 .p
t

ρ
ρ

∂
= ∇× × + ∇ ×∇

∂
uξ

ξ                   (2.4) 

In this equation, the first term on the right corresponds to the “barotropic” 
generation of vorticity (and captures the advection, stretching, and tilting of the 
vertical vorticity; see e.g. Klemp [29]), while the second term on the right cor-
responds to the “baroclinic” generation of vorticity, i.e., vorticity generation due 
to the misalignment of the gradients of mass density and pressure. 

In the rest of the paper, we will focus on flows in which a significant amount 
of vorticity is supported on long, narrow vortex filaments, which may be em-
bedded in a larger rotational flow. These may be baroclinic or barotropic in ori-
gin, and may demonstrate themselves as the suction spots shown in Figure 1. 

Flows with vortices that form in strongly sheared environments have a rough-
ly two-dimensional structure before they are stretched. In particular, Pouquet 
and Mininni [30] note that “under the influence of a strong external agent, such 
as gravity, rotation or magnetic fields, the flow becomes anisotropic and, in fact, 
tends to (although it never reaches) a near two-dimensional state, with thin lay-
ers in the case of stratification, or columnar (Taylor) vortices in the case of rota-
tion”. We will argue later, based on earlier work of Chorin [4] [6], that 
three-dimensional effects have to be taken into consideration when such vortices 
are stretched, due to their kinking up and dissipation. 

Some of the tracks shown in Figure 1 exhibit similarities to the two-dimensional 
case of interacting point vortices (see, e.g., [31] and Section 4 below). The impli-
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cation is that suction vortices appear to behave like two-dimensional vortices, 
then dissipate, potentially due to stretching. This phenomenon can be observed 
in videos of intense tornadoes and appears to be present in the simulations of 
Orf [10] [11]. Related concepts are discussed in [15] [22] [28] [32] [33]. 

These high-intensity vortices are barotropic, however, their origin could very 
well be baroclinic. Recent results of Markowski, Richardson and Bryan [9] sug-
gest that vorticity is produced baroclinicly in the rear flank downdraft, it then 
descends to the surface and is tilted into the vertical, and this process is linked to 
tornadogenesis. Once these vortices come into contact with the surface, and the 
stretching and surface friction related swirl (boundary layer effects) are in the 
appropriate ratio, then by analogy with the work of Fiedler and Rotunno [22] 
discussed below the vortex would now be barotropic and could have “negative 
temperature”. 

In statistical mechanics, a physical system is said to have negative temperature 
if, when energy is added to the system, the entropy of the system decreases, i.e., 
the system becomes “less random”. The supercritical vortex below a breakdown 
bubble is an example of such a system, as follows from the following discussion. 
Studies of vortex behavior in a Ward chamber [34] [35] [36] have shown that 
when the swirl ratio is in a certain range, the flow configuration takes on a 
structure that resembles a champagne glass. The stem of the glass would corres-
pond to the supercritical vortex and the part of the glass above the stem to the 
breakdown bubble (see Figure 2). Theoretical studies [22] [23] [24] [37], and 
experimental studies [34] [36] contributed to the identification of relationships 
between various quantities of interest in a supercritical vortex. 

Experimentally the following has been found for the vortex chamber flows. 
Holding the upward volumetric flow constant, as angular momentum is in-
creased, the radius of the supercritical vortex decreases, as does the length of the  
 

 
Figure 2. (a) Vortex breakdown in a vortex chamber [36]; (b) Vortex breakdown in a 
tornado [38]. 
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supercritical vortex, while the axial and azimuthal components of the velocity 
increase. This suggests that when the angular momentum is increased, the vortex 
is becoming “less random” as its volume decreases (entropy density is decreas-
ing) and the volumetric energy density of the vortex is increasing as the velocity 
increases. Hence such a vortex would exhibit negative temperature. 

As argued in [22], it is not unreasonable to expect behavior similar to that ob-
served in vortex chambers also in tornadic vortex flows. The critical aspect of the 
argument is that the vortices must be in contact with the ground for the super-
critical, negative-temperature vortex to occur. The effects of the boundary layer 
are critical in that as swirl increases, the thickness of the boundary layer de-
creases, and the radius of the supercritical vortex (thought of as an extension of 
the boundary layer) also decreases, as well as the length of the vortex. Addition-
ally, as swirl increases, the axial velocity in the core and the azimuthal velocity 
increase, suggesting that the energy density of the vortex increases. 

In the next sections, we will introduce the statistical mechanics of vortex gases 
and then discuss the two- and three-dimensional point vortex theories. The 
simpler two-dimensional theory allows one to gain some insights prior to any of 
the three-dimensional effects becoming important. 

3. Statistical Mechanics of Vortex Gases   

We next give a brief exposition of a theory of vortex gases by proceeding in 
analogy with the development of the Boltzmann distribution in the theory of 
statistical mechanics. 

The theory we describe below can be applied in both two and three dimen-
sions and can take different forms. Specifically, we will assume that a certain 
range of energy levels is accessible to the vortex system and study the energy 
probability distribution of the system as a whole, given, for example, a mean 
energy of the ensemble. This setting does not require a particular large number 
of vortices. 

As a specific example in two dimensions, one can replace the particles by 
point vortices and study the statistics of their distribution in the corresponding 
phase space with various conserved quantities serving as constraints in the La-
grange multipliers argument presented below. A specific example in three di-
mensions will be described in Section 5. 

Consider a system in which microstates can be associated with only a finite 
number of levels of relevant physical quantities. For the sake of simplicity, but to 
illustrate the argument in a fairly general form, we will describe below the case 
with energy and another quantity, for example, a moment of inertia, being the 
conserved quantities. One can easily modify this argument to use fewer or more 
constraints as seen below. 

We consider a vortex system with k possible energy and moments of inertia 
levels ( ),j jE I , 1, ,j k=  . Let 0 1jp≤ ≤  represent the probability that the 
system is in a state with energy jE  and moment of inertia jI . We assume that 
the macroscopic quantities of the system, the mean energy of the ensemble, 
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denoted by E , and the mean moment of inertia, denoted by I , are fixed. 
Then  

1
1,

k

j
j

p
=

=∑                            (3.1) 

1
,

k

j j
j

p E E
=

=∑                          (3.2) 

1
.

k

j j
j

p I I
=

=∑                           (3.3) 

We define the entropy of the ensemble corresponding to the macrostate 
( ),E I , up to an additive constant, as  

1
log .

k

j j
j

S p p
=

= −∑                        (3.4) 

To maximize the entropy, we consider the Lagrangian  

( )1
1 1

1 1

, , log 1

,

k k

k j j j
j j

k k

j j j j
j j

L p p p p p

p E E p I I

α

β γ

= =

= =

 
= − − − 

 
   

− − − −   
   

∑ ∑

∑ ∑



        (3.5) 

where α , β  and γ  are Lagrange multipliers. Differentiating (3.5) with 
respect to each of the jp  and setting these partial derivatives equal to zero, 
we obtain  

log 1 0, 1, , ,j j jp E I j kα β γ− − − − − = =   

while the derivatives with respect to the Lagrange multipliers return the 
constraints (3.1)-(3.3). This results in  

1e , 1, , .j jE I
jp j kα β γ− − − −= =                    (3.6) 

From (3.1) and (3.6) we now have  

1

1
e e ,j j

k
E I

j
Zβ γα − −+

=

= ≡∑                      (3.7) 

where Z is called a partition function. It follows that  

e ,
j jE I

jp
Z

β γ− −

=                         (3.8) 

and from (3.2) and (3.3) we have  

1 1

e eand .
j j j jE I E Ik k

j j
j j

E E I I
Z Z

β γ β γ− − − −

= =

= =∑ ∑  

Consequently, using the definition of the partition function (3.7), we obtain  

1

1

e
log ,

e
log .

j j

j j

k
E I

j
j

k
E I

j
j

E
Z E

Z

I
Z I

Z

β γ

β γ

β

γ

− −

=

− −

=

∂
− = =

∂

∂
− = =

∂

∑

∑
                (3.9) 
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The Expression (3.4) for the entropy can be written as  

( )
1

log log ,
k

j j j
j

S p E I Z E I Zβ γ β γ
=

= + + = + +∑         (3.10) 

and differentiating it with respect to E  and using (3.9) gives  

log log 1 .

S E I
E E E

Z Z
E E T

β γ
β

β γ
β

β γ

∂ ∂ ∂
= + +

∂ ∂ ∂

∂ ∂ ∂ ∂
+ + = ≡

∂ ∂ ∂ ∂

          (3.11) 

In analogy with statistical mechanics, 1T β=  is called the “temperature” 
associated with the vortex configuration, and β  is the corresponding inverse 
temperature, or “coldness” according to Garrod [39]. From now on we will use 
the term temperature in this particular sense. As can be seen from the 
argument above, there is, a priori, no constraint that will impose the 
requirement 0β >  or 0T > . That is, in general the temperature can be 
positive or negative, or, in fact, infinite when 0β = . In particular, as β  
decreases from +∞  to −∞ , T increases from 0 through positive values to 
+∞  (which is identified with −∞ ), and then increases from −∞  to 0 
through negative values. (One can think of this idea as traversing a circle 
obtained by transforming the real number line into a circle by identifying +∞  
and −∞ , both for β  and T; this identification is a special case of the Möbius 
transformation of the complex plane.) In a system with negative temperature, 
Equation (3.11) implies that an increase in the mean energy of the system 
results in a decrease of its entropy; or vice versa, to increase its entropy, the 
system has to decrease its mean energy. Systems with negative temperatures 
and their behavior are discussed further in Section 6. 

Note that the partition function (3.7) is well defined for all real values of β , 
including negative values, due to the finite number of terms in the sum. A 
similar argument as above can be used in the case of a continuum of available 
levels with sums replaced by corresponding integrals over the underlying phase 
space provided that the relevant integrals are convergent [6] [40] [41]. Examples 
with negative temperatures will be discussed in the sections below. 

We comment that additional constraints can be easily incorporated into the 
framework above; in that case the quantities I , jI , and γ  can be replaced by 
vectors I , jI , and γ , respectively, and the above derivation is unchanged. By 
a process similar to (3.11), we can also obtain S I γ∂ ∂ =  in the case of scalar 
I  and γ , and its obvious extension in the vector case. Similarly, the second 
constraint can be eliminated altogether to result in a problem with just one 
Lagrange multiplier, β . 

The model above, in which energy and additional quantities can vary, 
corresponds to the grand canonical case of statistical mechanics, and by rewriting 
(3.10) we can define (as in thermodynamics) the thermodynamic (Landau) 
energy potential  
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1 log ,Z E TS Iµ
β

Ω ≡ − = − −  

where Tµ γ= −  is usually referred to as a chemical potential. Similarly, the case 
with a single Lagrange multiplier corresponds to the canonical case. In this case, 
(3.10), without the γ  term, can be used to define the equivalent of the 
Helmholtz free energy, F, by  

1 log .F Z E TS
β

≡ − = −  

Consequently, additional insights can be gained from the parallels with 
thermodynamics (see e.g. [31]). 

4. The Two-Dimensional Point Vortex Theory   

We now proceed to describe a two-dimensional vortex gas model [3] [27] [42] 
[43]. We note that a critique of the notion of negative temperature in the 
two-dimensional vortex gas theory has been given by Frohlich and Ruelle [44] 
and Miller [45]. In what follows, all vectors are expressed in the Cartesian 
coordinate system. 

In two dimensions, vorticity is orthogonal to the plane of the flow, so we have 
( )0,0,ζ=ξ , and the vorticity equation for an isentropic, incompressible fluid  

flow (2.4) reduces to 
D
Dt

= 0ξ
, or 0D

Dt
ζ
= . Writing the velocity in the component  

form, ( ), ,0u v=u , the incompressibility condition, 0∇ ⋅ =u , together with the 
assumption that the underlying domain is simply connected implies that there 
exists a stream function, ( ),x yψ , such that  

,u v
y x
ψ ψ∂ ∂

= = −
∂ ∂

                     (4.1) 

and  

.ψ ζ−∆ =                          (4.2) 

To model a discrete collection of vortices, assume that vorticity is concentrated 
at points ( ),i i ix y=x  for 1, ,i n=  , each with circulation iΓ , so that  

( ) ( )
1

,
n

i i
i

ζ δ
=

= Γ −∑x x x  

where δ  denotes the Dirac delta function and ( ),x y=x . The solution to (4.2) 
in all of 2  is given by  

( )
1

log ,
2π

n
i

i
i

ψ
=

Γ
= − −∑x x x  

and, using (4.1), the velocity field induced by the jth vortex is,  

( ) ( ) ( )( )2 2 , , .
2π 2π

j j
j j j j jy y x x r

r r
⊥Γ Γ

= − = − − − = −u x x x x x  

If one assumes that each of the vortices moves under the influence of the 
combined velocity field of the remaining vortices, then  
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( ) ( )
1

d
,

d

n n
i

j i j i
j j i
j i

t = ≠
≠

= =∑ ∑x u x u x                    (4.3) 

or, in the component form,  

( ) ( )
2 2

d d1 1and ,
d 2π d 2π

j j i j j ii i

j i j iij ij

y y x xx y
t tr r≠ ≠

Γ − Γ −
= = −∑ ∑  

where ij i jr = −x x . These equations form a Hamiltonian system that has 
rigorous connections with the Euler equation [27] [42]. The corresponding 
Hamiltonian is  

1 ,

1 log .
4π i j i j

i j n
i j

H
≤ ≤
≠

= − Γ Γ −∑ x x                  (4.4) 

It is easy to check that the Hamiltonian is conserved, i.e., 
d 0
d
H
t
= , which, in  

particular, implies that if all the circulations are of the same sign, then the 
vortices cannot merge in finite time. Other conserved quantities are the total 
vorticity, Γ , the center of vorticity, M , and the moment of inertia, I , given 
by  

2, , ,i i
i i iI

Γ
Γ = Γ = = Γ −

Γ
∑∑ ∑

x
M x M           (4.5) 

where all the sums are for 1, ,i n=  . 
We remark that on a domain with a boundary (such as a half-plane, disk, 

etc.), the stream function, and hence also the Hamiltonian, would be augmented 
by other terms to satisfy relevant boundary conditions; these terms do not 
significantly affect the analysis of this section. However, conserved quantities 
will change or be lost due to symmetry breaking in accordance with Noether’s 
theorem [41]. 

Using the above theory, one can model the dynamics of vortex configurations 
in the plane [31] [41] [42] [46]. For example, a pair of vortices of equal 
circulations will rotate about the midpoint of the segment joining them with 
constant angular speed, while a pair of vortices of opposite circulations will 
translate along the line perpendicular to the segment joining them with constant 
speed. Also, two pairs of vortices of equal circulations will typically rotate about 
their center of vorticity with the vortices in each pair rotating in tandem-this can 
be viewed as an idealized scenario of two suction vortices rotating about one 
another within a larger flow, or as the rotational behavior near the ground of two 
arching vortices. A line of equidistant vortices of equal circulations will remain 
stationary, while a half-line of such vortices will roll up into a spiral, simulating a 
two-dimensional version of a vortex sheet roll-up. A result of a simulation with 
smaller vortices along a vortex sheet wrapped around a larger vortex is shown in 
Figure 3; both the smaller vortices, shown in red, and the larger vortex, shown 
in blue, are modeled by a collection of point vortices of equal strength iΓ = Γ , 
whose dynamical behavior is governed by (4.3). This equation is non-dimensional  
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Figure 3. An illustration of the dynamics of a vortex gas using point vortices in two dimensions. Smaller vortices 
(red) around a larger vortex (blue) are being absorbed and dispersed in the surrounding flow. Non-dimensional 
lengths and time are used. 
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and thus lengths and time in Figure 3 are shown without units. The color coding 
is used to highlight the dissipation and mixing of the smaller intense vortices in 
the larger less intense vortex. In Section 6 we will briefly discuss a similar, 
three-dimensional scenario with a train of small, intense vortices entering a 
larger tornadic flow. 

Aside from studying the dynamics of a vortex gas, the theory from Section 3 
can be applied to study the statistics of spatial distributions of vortices, originally 
due to Onsager [3]. The constraints for the Lagrange multipliers argument in the 
plane are given by the integral equivalent of (3.1), the Hamiltonian (4.4) in the 
canonical case, and, additionally, the conserved quantities in (4.5) in the grand 
canonical case. With a fixed number of vortices with fixed circulations iΓ , the 
first of the constraints in (4.5) is trivially satisfied, while the second one can be 
satisfied for any configuration by a simple translation. This thus leads to the 
same scenario as discussed in Section 3 with either one or two conserved 
quantities, the Hamiltonian (energy) and the moment of inertia. 

As mentioned earlier, pairs of vortices of opposite signs of circulations will 
travel along a straight line with constant speed. Hence, when studying the 
motion of vortices in the whole plane, one typically assumes that the vortex 
circulations all have the same sign. The conservation of the moment of inertia 
given in (4.5) can then be invoked to conclude that the phase space of the vortex 
system is effectively bounded. 

In the case with a bounded phase space, Onsager [3] shows that both positive 
and negative temperatures exist in the system regardless of the signs of the 
vortices. In particular, Caglioti et al. [40] show that in the case with n vortices 
with equal circulations Γ  in a smooth, bounded, connected, and open domain 
in 2 , the integral version of the partition function (3.7) is well defined if and 
only if ( )2

08π ,nβ ∈ − Γ +∞ , where 0 nΓ = Γ  is the total circulation of the system. 
In systems with negative temperatures, the corresponding integral counterpart 

of (3.8) implies that the most likely configurations are those with large energy H, 
which, in view of the definition (4.4), corresponds to the point vortices of equal 
sign clustering near their center of vorticity. Thus, these “hot” systems would 
exhibit the inverse energy cascade with energy flowing from smaller scales 
(individual vortices) to larger scales (larger coalesced vortex). Therefore, this 
could serve as a simplified model for the apparent two-dimensional behavior of 
suction vortices moving into and within a larger tornadic flow and eventually 
transferring their energy into it, as discussed in the previous section. 

On the other hand, in systems with positive temperatures, the most likely 
configurations would be those with small energy, which corresponds to vortices 
of equal sign spreading out. For some results of Monte Carlo simulations with 
positive temperatures and the moment of inertia constraint, see [31]. 

5. Three-Dimensional Vortex Gas Models  

Modeling of three-dimensional vortex gases is much more difficult and has been 
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developed only in special cases. Given a vorticity field ( )xξ  in 3 , the system  
, 0= ∇× ∇ ⋅ =u uξ  

can be solved for the velocity field ( )u x  under the assumption that ( )xξ  
decays sufficiently fast as →∞x  [43]. For the velocity field we get  

( ) ( ) ( )
3

1 d ,
4π

′ ′− ×
′= −

′−
∫

x x x
u x x

x x

ξ  

known as the Biot-Savart law, and, consequently, the kinetic energy of the flow 
can be written as  

( ) ( )

( ) ( ) ( )

( ) ( )( ) ( )

21 d
2
1 d d

8π

1 d d ,
8π

E ρ

ρ

ρ

=

′⋅
′=

′−

′∇ × ⋅
′+

′−

∫

∫∫

∫∫

x u x x

x x
x x x

x x

x u x x
x x

x x

ξ ξ

ξ

 

which, in the case of a homogeneous fluid rescaled so that ( ) 1ρ ≡x , reduces to 
([6])  

( ) ( )1 d d .
8π

E
′⋅

′=
′−∫∫

x x
x x

x x
ξ ξ                  (5.1) 

All of the above integrals are taken over the supports in 3  of the relevant 
functions. Expressions with a kinetic energy of this or similar form appear in 
most of the three-dimensional vortex gas models. In the following sections we 
first briefly mention the models of Lions and Majda [47] and Berdichevsky [48] 
[49], which do not directly apply in our context as they deal with nearly parallel 
vortices. We then focus more on the model of Chorin and Akao [4], also 
described in Chorin [6], which deals with the effects of stretching and folding of 
vortices, and we also briefly mention some consequences of a follow up work by 
Flandoli and Gubinelli [7], which shows that vortices with fractal cross sections 
have finite energy. 

5.1. Models with Nearly Parallel Vortices  

Extending the work of Klein Majda and Damodaran [50], Lions and Majda [47] 
develop a mathematically rigorous equilibrium statistical mechanics theory for a 
collection of three-dimensional, periodic, nearly parallel interacting vortices 
with equal circulations, taken equal to 1. In this theory, simplified asymptotic 
expansions of the Navier-Stokes equations with a large Reynolds number, 
derived by [50], are utilized. The vortex model is described by the following 
Hamiltonian equations of motion of each vortex, ( ) 2,jX tσ ∈ , 1, ,j N=  ,  

2

2 2

1 ,
2

N
j j j k

k j
j k

X X X X
J

t X X
α

σ ≠

 ∂ ∂ − = +
 ∂ ∂ − 

∑  

where t denotes time, σ  parametrizes the center curve of each vortex, 0α >  
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is a parameter related to the vortex core structure and taken to be the same for  

all vortices, and 
0 1
1 0

J
− 

=  
 

. The first term in the brackets models the  

self-interaction behavior of the jth vortex, while the second term models the 
motion of the jth vortex due to the other vortices. Note that all of these 
interactions are restricted to the same fixed height σ . This model, therefore, 
reduces to the two-dimensional model considered in Section 4 if the dependence 
on σ  is suppressed. The main result is the derivation of a mean-field theory 
for the presented model. To this end, a limit as N →∞  of a rescaled model is 
studied and a probability distribution of vortex filaments in 2  is obtained. 
This model allows for a limited amount of stretching and folding, inhibiting the 
transfer of energy across scales. Also, only positive temperatures are considered. 

Another statistical mechanics theory for periodic vortex lines, this time in a 
cylindrical bounded domain and under the assumption that the underlying 
Hamiltonian system is ergodic, is developed by Berdichevsky [48] [49]. The 
model uses the maximum entropy principle and an assumption of sufficiently 
smooth vortex lines; the smoothness is controlled by a parameter referred to as 
“vortex diffusivity”. In this approach, the kinetic energy of the system is 
determined as a solution to a variational problem, and the partitioning of the 
corresponding phase space with respect to this energy is analyzed via a 
maximization of an entropy functional. A comparison to the result of [47] is 
given, which includes a mild criticism of the latter and pointing out that 
Berdichevsky’s model allows for negative temperatures. Nevertheless, the 
amount of stretching and folding of vortices is limited in the same way as in 
[47]. 

5.2. Models with Folding Vortices  

In contrast to the models in the previous section, the main feature of Chorin’s 
model [4] [5] [6] is folding of vortex filaments leading to the transfer of energy 
from smaller to larger scales. The model is described in the context of a single 
vortex filament on a (cubic) lattice, 3 , although it can naturally be applied to a 
collection of such vortices. The vortices are identified with oriented, self-avoiding 
random walks on the lattice made up of vertical and horizontal line segments 
connecting adjacent points on the lattice. 

The Expression (5.1) for the kinetic energy of one vortex is discretized and 
becomes  

1 1 ,
8π 8π

i j
ii

i j i i
E E

i j≠

⋅
= +

−∑∑ ∑
ξ ξ

                  (5.2) 

where i and j are the three-dimensional coordinates of the locations of the 
centers of the vortex segments making up the vortex, iiE  is the “self-energy” 
term of the ith segment that is constant and is, therefore, neglected in the 
analysis, i j−  is the distance between the ith and jth segment centers, and iξ  
is the vorticity of the ith segment. Notice that after neglecting the self-energy 
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term, there is no singularity in (5.2), although a logarithmic singularity will 
appear if the lattice spacing is allowed to approach 0. 

The probability of a vortex with energy E and inverse temperature β  is 
given by ( ) e EP E Zβ−= , where Z is a corresponding partition function. The 
phase space of permissible configurations with N segments is then explored and 
analyzed using Monte Carlo techniques coupled with a Metropolis-Hastings 
rejection algorithm. A small interval of positive, negative, and zero values of β  
is explored; equilibrium configurations with negative temperatures are shown to 
be straighter than those with positive temperatures, which tend to kink up and 
fold into balls. The 0β =  case (infinite temperature) corresponds to the 
well-studied polymeric case (see e.g. [6]). 

The effects of stretching are studied by performing simulations with vortices 
of various lengths (but fixed lattice spacing). One observation is that the mean 
energy of a vortex filament with a fixed temperature increases with the length. 
Also, if the mean energy is constant and a vortex is being stretched, the 
temperature decreases from negative to positive through T = ∞  ( 0β = ). 
Therefore, since the energy of the flow should be conserved, if a vortex with 
negative temperature is being stretched, it has to “cool off” and/or folding has to 
occur to cancel any excess energy. Furthermore, when the temperature decreases 
to the positive range, folding should occur as discussed in the previous 
paragraph. Finally, it is argued that the entropy of a vortex increases with its 
length. 

Flandoli and Gubinelli [7], motivated by the work of Chorin and some 
numerical experiments, consider single three-dimensional vortices with Brownian 
or smooth cores, possibly fractal cross sections, and positive and negative 
temperatures. This approach thus alleviates the constraints of Chorin’s lattice 
model and incorporates Chorin’s argument for fractal cross section [6]. The 
authors show that vortices with cross sections of fractal dimension greater than 1 
can exist with finite energy and finite partition functions over all positive 
temperatures and a limited range of negative temperatures. Folding of a vortex is 
naturally present in the model, and so features present in Chorin’s model are 
present in this model as well. 

We conclude this section by commenting on the appropriateness of this 
model and repeating some of the points made earlier in this paper. As 
mentioned earlier, visual observations of small-scale subvortices in a tornado 
show intense vortices with transient life spans that start off smooth and straight, 
then kink up and dissipate. These are the supercritical or suction vortices, and 
tracks left by such vortices generally are associated with considerable damage 
indicating high energy density. This mirrors the modeled behavior of the 
negative-temperature vortices undergoing stretching which kink up and then 
dissipate. We also point out that Lewellen and Sheng [13] modeled tornadic 
flows using a large-eddy simulation model, where the large eddies could be 
identified with supercritical vortices. In this paper, we draw the connection 
between large eddies and negative-temperature vortices that transfer energy to 
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the larger scale flow, thus driving the turbulence. 
In the next section we discuss the consequences and importance of 

negative-temperature systems and the effects of stretching and folding of 
vortices. 

6. Entropy and Temperature 

In classical thermodynamics, when two isolated systems in equilibrium are 
brought into thermal contact, heat will flow from the “hotter”, or 
higher-temperature system, to the “colder”, or lower-temperature one. In this 
section, we use this idea to show that in this sense negative temperatures are 
hotter than positive temperatures and also negative temperatures that are closer 
to zero are hotter than negative temperatures that are farther from zero. We 
follow the treatment given in Landau and Lifshitz [26]. 

Consider two isolated systems, one with mean energy 1E , entropy 1S , and 
temperature 1T  and the other with mean energy 2E , entropy 2S , and 
temperature 2 1T T≠ , each separately in equilibrium. Assume that the two 
systems are brought into thermal contact so that the mean energy, E , and the 
entropy, S, of the combined system are  

1 2 1 2and .E E E S S S= + = +  

As the combined system adjusts to equilibrium, the time rate of change of the 
total entropy is positive and satisfies  

1 21 2 1 2

1 2

d dd d d dd 0.
d d d d d d d

E ES S S SS
t t t E t E t
= + = + >  

Conservation of energy implies that  

1 2d d d
0,

d d d
E E E
t t t

= + =  

and hence, with = 1i iTβ ,  

( )1 11 2
1 2

1 2

d dd dd 0,
d d d d d

E ES SS
t E E t t

β β
 

= − = − > 
  

 

It follows that when 1 2β β> , heat will flow from system 2 to system 1 (since 
then 1d d 0E t >  and 2d d 0E t < ), so system 2 is hotter than system 1. In 
particular, if 1β  and 2β  have the same sign, we have 1 2T T< , whether 
positive or negative, which is consistent with the natural interpretation of larger 
temperatures corresponding to hotter systems. Notice, however, that if 1β  and 

2β  have opposite signs, we have 10 T< < ∞  and 2 0T−∞ < < , which shows 
that a negative-temperature system is hotter than a positive-temperature system. 
Hence, the three cases below follow: if   

1) 1 20 T T< < ≤ ∞ , or  
2) 2 10T T−∞ ≤ < < ≤ ∞ , or  
3) 1 2 0T T−∞ ≤ < < ,  

then the system with temperature 2T  is hotter than the system with 
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temperature 1T  and energy will be transferred from the former to the latter. 
We now consider a collection of vortices (a vortex gas), with a specific 

example of interest being a larger tornadic vortex with ambient smaller vortices. 
The entropy of such a system is affected by the structure of each vortex, e.g., 
their stretching, folding, and collapse, and also by the spatial organization, or 
configuration, of the vortices. 

In a system with a single vortex, the entropy is a function of the structure of 
the vortex, and we can refer to it as a structural entropy of the vortex. In the 
following paragraphs we will focus on briefly discussing supercritical vortices 
and argue that they have negative temperature. We first focus on relevant 
previous work on vortices in a Ward vortex chamber and then discuss 
connections to supercritical vortices in nature, such as the suction vortices 
discussed earlier. 

Experimental vortex chamber studies by Ward [34] and later Church, et al. 
[36] have resulted in the following observations. By controlling the volumetric 
flow of the updraft and the angular momentum added to the flow (or swirl), it 
has been observed that when the ratio of the two is in a certain range, then the 
flow configuration takes on a structure that resembles a side view of a 
champagne glass: the stem of the glass corresponds to the supercritical (what we 
will argue to be a negative-temperature) vortex, and the part of the glass above 
the stem corresponds to the breakdown bubble (below the subcritical vortex). In 
particular, for swirl ratios in the relevant range, keeping the updraft in the 
convection chamber fixed and increasing the angular momentum in the 
convergence zone of the chamber resulted in decrease of the radius of the 
supercritical vortex and its length, while the axial velocity as well as the 
azimuthal velocity of the supercritical vortex increased. 

Fiedler and Rotunno [22] combined the results of these experimental vortex 
chamber studies and the theoretical studies by Barcilon and Burggraf et al. [23] 
[24] [37], all of which contributed to the identification of quantitative relationships 
between the radius of the supercritical vortex and the amount of angular 
momentum added to the flow, as well as relationships between its axial and 
azimuthal velocity components and the added angular momentum. 

In the models considered in [23] [24] [37], the effect of the boundary layer on 
the structure of supercritical vortices is studied. In these models, the boundary 
layer is decomposed into a primary layer immediately above the ground and a 
secondary layer above that. The surface friction in the primary boundary layer 
kills off the cyclostrophic balance, and the pressure gradient force dominates. 
The result is a nearly radial inflow that erupts from the surface to form a vortex. 
In the secondary boundary layer, the flow recovers to a potential flow, and above 
the secondary boundary layer the cyclostrophic balance is recovered. 

We now argue that such supercritical vortices have negative temperature in 
the statistical mechanics sense. To this end, we first observe that, based on the 
arguments above, when the supplied angular momentum is increased, the axial 
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and azimuthal components of the velocity increase (while the radial one is 
negligible), so the (kinetic) energy density in the vortex increases. We next argue 
that the entropy density has to be decreasing in this case, resulting in the 
negative temperature in the system. 

Intuitively, since the radius and the length of the vortex are decreasing with 
increasing angular momentum, the volume of the vortex is decreasing, and the 
vortex flow is becoming more organized, resulting in a decrease in entropy 
density. 

More specifically, we can argue using considerations about the corresponding 
phase space. Entropy can alternatively be defined as the logarithm of the 
measure of the subset of configurations in the phase space with the given energy. 
These configurations of a single vortex would be described by the geometry of 
the vortex (such as the center line and the cross section) as well as its vorticity. 
As discussed before, vortices with very large energies would be straight and 
narrow, with high values of vorticity. As such, the set of such configurations 
would have a small measure and thus small entropy. Increasing energy would 
then result in further decrease of entropy, and thus such configurations would 
have negative temperatures. Applying this argument locally and assuming local 
equilibrium, it follows that a supercritical vortex has negative temperature. 

As in the paper by Fiedler and Rotunno [22], who argue that tornadoes 
exhibit similarities to vortices in vortex chambers, we believe that under some 
conditions supercritical vortices in nature (suction vortices) also have negative 
temperatures. The crucial fact here is that the vortices must be in contact with 
the ground which impedes the cyclostrophic balance; in this case, a narrow, 
intense, negative-temperature vortex can form if the swirl ratio is in the right 
range. The effects of the boundary layer are important in that as the angular 
momentum increases, the thickness of the boundary layer decreases, and the 
radius of the supercritical vortex (thought of as an extension of the boundary 
layer) also decreases, as does the length of the vortex. Also, both the vertical 
velocity in the core and the azimuthal velocity increase. We emphasize here that 
the swirl ratio must be in a certain range for the vortex to be supercritical; for a 
swirl ratio outside this range the vortex behavior would be different, and the 
temperature would not necessarily be negative. Discussions of relevant ranges 
for swirl ratios can be found in [51] [52]. Another mechanism that may lead to 
decrease in entropy density and increase in energy density is a corner flow 
collapse as discussed in [33] [51]. In this case, it is thought that the rear flank 
downdraft blocks the radially inward-flowing air, thus blocking the influx of 
angular momentum. This would lead to an intensification of the near-surface 
vortex and the possible creation of a supercritical vortex. 

Consider now two disjoint vortex systems: one consisting of an intense, 
supercritical vortex and one consisting of a larger, turbulent one (tornado or a 
developing tornado; turbulence would correspond to T = ±∞ ). Assume that the 
two systems are each separately in equilibrium, and the supercritical vortex 
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moves into the tornado. Since the supercritical vortex has negative temperature, 
presumably higher than the tornadic vortex, the discussion from the beginning 
of the section implies that the supercritical vortex will lose energy to the larger 
tornadic flow, thus contributing to the maintenance (or genesis) of the tornado. 
The supercritical vortex can either fold and dissipate or breakdown into multiple 
smaller subvortices. Videos of tornadoes appear to show both possibilities 
occurring. 

Applying this argument to a vortex gas scenario with multiple supercritical 
vortices entering a tornado (such as those generated in a vortex sheet and shown 
in Figure 4 or those observed in the simulations of [10] [11]), the above process 
repeats itself as the individual vortices dissipate and transfer energy to the 
surrounding flow, thus contributing to the maintenance of the tornado or 
genesis of the developing tornado and exhibiting an inverse energy cascade as in 
the case of point vortices in two dimensions. 

A train of vortices in a vortex sheet entering the tornado and transferring the 
energy to the larger scale is a possible explanation for the gate-to-gate shear 
measured for the Goshen County, Wyoming tornado and displayed in Figure 5, 
see [53]. In this figure we observe periodic pulses in the gate-to-gate shear which 
could possibly be explained by intense vortices entering the tornado. It should be 
pointed out that no multiple vortices were visually observed for this tornado 
[53], but the existence of the small scale supercritical vortices cannot be ruled 
out, since they would be very hard to observe both visually and on a radar.  

7. Conclusions   

In this work we have summarized some of the main features of vortex gas theo-
ries in two and three dimensions that appear to be relevant to the genesis and 
maintenance of a tornado. To this end, the statistical mechanics aspects of these  
 

 
Figure 4. Vortex sheet roll-up over a lake with traces of vortices visible on the water sur-
face. © Gene Moore. 
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theories have been reviewed in Section 3, the two-dimensional point vortex theory 
was presented in Section 4, and the most relevant results of three-dimensional 
vortex gas models have been summarized in Section 5. The statistical thermody-
namic aspects of interactions of high-temperature vortices (represented by 
small-scale intense suction vortices) with cooler ambient vortices (represented by a 
larger tornadic vortex) have been discussed in Section 6. 

One of the main results of this work is the proposed explanation of the inverse 
energy cascade mechanism using the vortex gas theory, which can be used to ex-
plain tornadogenesis and maintenance. Using the vortex gas theory we relate 
supercritical vortices to vortices with negative temperature and show that dissi-
pation or breakdown of supercritical vortices results in the transfer of energy 
from smaller to larger scales. Indeed, video footage of subvortices in tornadoes 
suggests that they behave as negative-temperature vortices would. For example, 
in some instances the vortices’ appearance is associated with stretching and with 
strong convergence. This may indicate that the vortex intensification is related to 
a decrease in entropy and an increase in energy. Numerical simulations of in-
tense vortices and their interpretations in [15] [22] [28] [33]] [54] show that the 
maximum wind speeds in intense narrow vortices undergoing vortex breakdown 
may exceed the speed of sound in the vertical direction. The suction vortices in 
nature, which may be extremely intense, have been observed to pull cornstalks 
out of clay soil with their roots. 

In this work we mainly consider barotropic vortices, but this context is viewed 
as subsequent to preliminary stages of vertical vorticity production from hori-
zontal vorticity, for which possible mechanisms of production include baroclinic 
production in the rear flank downdraft [9]. We also highlight the importance of 
the boundary layer and its relation to the structure of the supercritical suction 
vortices. 

As we noted earlier in Section 2, under the influence of strong rotation, a tur-
bulent flow becomes anisotropic with the flow tending toward, but never fully be-
coming, a two-dimensional flow [30]. Also, most of the relevant three-dimensional 
theories, with the exception of Chorin’s, deal with nearly parallel vortices, and 
thus we believe that valuable insight can be gained from the two-dimensional 
theory as well. In particular, the tracks of overlapping suction vortices moving 
through fields shown in Figure 1 as observed by Fujita [21] and others [55] from 
the air can be modeled by a pair of cyclonically rotating point vortices in the 
half-plane; also, the two-dimensional behavior of interacting vortices of various 
strengths can be modeled (see Figure 3) and exhibits features similar to the dis-
sipation of a smaller, intense vortex in a larger tornadic flow, even though this 
model cannot capture any three-dimensional effects. We note that it is not un-
reasonable to expect a scenario similar to that shown in Figure 3 in nature, as 
the radar reflectivity image shown in Figure 6 indicates.  

In this image, a hook echo region of a supercell thunderstorm is shown, with 
additional, smaller hooks on the boundary of the region likely representing suc-
cessive vortices in a vortex sheet. Such vortices could provide periodic pulses of  
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Figure 5. Time series of maximum gate-to-gate shear, ΔV, consistent with energy being pumped into the tornado 
in discrete pulses, possibly from roll-up vortices within a vortex sheet (left); FFT of ΔV with peak energy at 66 
seconds and 108 seconds (right), suggestive of rotating asymmetry in the vortex; © AMS, [53]. 

 

 
Figure 6. A reflectivity image of a tornado showing potential subvortices on the peri-
phery of a larger tornado; © Joshua Wurman, [56]. 
 
energy to the tornado in accordance with the main ideas of this paper. 

Acknowledgements 

Dokken, Scholz, and Shvartsman were supported by National Science Founda-
tion grant DMS-0802959. Funding for Potvin was provided by the NOAA/Office 
of Oceanic and Atmospheric Research under NOAA-University of Oklahoma 
Cooperative Agreement #NA11OAR4320072, U.S. Department of Commerce. 

References 
[1] Helmholtz, H.V. (1858) Uber Integrale der hydrodynamischen Gleichungen welche 

https://doi.org/10.4236/ojfd.2017.74040


P. Bělík et al. 
 

 

DOI: 10.4236/ojfd.2017.74040 619 Open Journal of Fluid Dynamics 
 

den Wirbelbewegungen entsprechen. Crelle, 55, 25-55.  
https://doi.org/10.1515/crll.1858.55.25 

[2] Kelvin, L. and Thomson, W. (1869) On Vortex Motion. Transactions of the Royal 
Society of Edinburgh, 25, 217-260. 

[3] Onsager, L. (1949) Statistical Hydrodynamics. Il Nuovo Cimento, 6, 279-287.  
https://doi.org/10.1007/BF02780991 

[4] Chorin, A.J. and Akao, J. (1991) Vortex Equilibria in Turbulence and Quantum 
Analogues. Physica D, 52, 403-414. https://doi.org/10.1016/0167-2789(91)90136-W 

[5] Chorin, A.J. (1991) Equilibrium Statistics of a Vortex Filament with Applications. 
Communications in Mathematical Physics, 141, 619-631.  
https://doi.org/10.1007/BF02102820 

[6] Chorin, A.J. (1994) Vorticity and Turbulence. Springer-Verlag, New York. 

[7] Flandoli, F. and Gubinelli, M. (2002) The Gibbs Ensemble of a Vortex Filament. 
Prob. Th. Rel. Fields, 112. 

[8] Naylor, J. and Gilmore, M.S. (2013) Vorticity Evolution Leading to Tornadogenesis 
and Tornadogenesis Failure in Simulated Supercells. Journal of Atmospheric 
Sciences, 71, 1201-1217. 

[9] Markowski, P., Richardson, Y. and Bryan, G. (2014) The Origins of Vortex Sheets in 
a Simulated Supercell Thunderstorm. Monthly Weather Review, 142, 3944-3954.  
https://doi.org/10.1175/MWR-D-14-00162.1 

[10] Orf, L., Wilhelmson, R.B., Wicker, L.J., Lee, B.D. and Finley, C.A. (2014) Genesis 
and Maintenance of a Long-Track EF5 Tornado Embedded within a Simulated Su-
percell. 27th Conference on Severe Local Storms, Madison. 

[11] Orf, L., Wilhelmson, R., Lee, B., Finley, C. and Houston, A. (2016) Evolution of a 
Long-Track Violent Tornado within a Simulated Supercell. Bull. Amer. Meteor. Soc. 

[12] Sasaki, Y.K. (2014) Entropic Balance Theory and Variational Field Lagrangian 
Formalism: Tornadogenesis. Journal of the Atmospheric Sciences, 71, 2104-2113.  
https://doi.org/10.1175/JAS-D-13-0211.1 

[13] Lewellen, W.S. and Sheng, Y.P. (1980) Modeling Tornado Dynamics. Technical 
Report, U.S. Nuclear Regulatory Commission, NTIS NUREG/CR-258. 

[14] Wilhelmson, R.B. and Wicker, L.J. (2002) Numerical Modeling of Severe Storms. 
American Meteorological Society, 123-166. 

[15] Fiedler, B.H. (1994) The Thermodynamic Speed Limit and Its Violation in Axi-
symmetric Numerical Simulations of Tornado-Like Vortices. Atmosphere-Ocean, 
32, 335-359. https://doi.org/10.1080/07055900.1994.9649501 

[16] Nolan, D.S. (2012) Three-Dimensional Instabilities in Tornado-Like Vortices with 
Secondary Circulations. Journal of Fluid Mechanics, 711, 61-100.  
https://doi.org/10.1017/jfm.2012.369 

[17] Larcheveque, M. and Chaskalovic, J. (1994) A New Mathematical Model Applied to 
Tornado Genesis. International Journal of Engineering Science, 32, 187-193.  
https://doi.org/10.1016/0020-7225(94)90160-0 

[18] Serrin, J. (1972) The Swirling Vortex. Philosophical Transactions of the Royal So-
ciety A: Mathematical, Physical and Engineering Sciences, 271, 325-360.  
https://doi.org/10.1098/rsta.1972.0013 

[19] Temam, R. (1977) Navier-Stokes Equations: Theory and Numerical Analysis. 
North-Holland. 

[20] Turner, J.S. and Lilly, D.K. (1963) The Carbonated-Water Tornado Vortex. Journal 

https://doi.org/10.4236/ojfd.2017.74040
https://doi.org/10.1515/crll.1858.55.25
https://doi.org/10.1007/BF02780991
https://doi.org/10.1016/0167-2789(91)90136-W
https://doi.org/10.1007/BF02102820
https://doi.org/10.1175/MWR-D-14-00162.1
https://doi.org/10.1175/JAS-D-13-0211.1
https://doi.org/10.1080/07055900.1994.9649501
https://doi.org/10.1017/jfm.2012.369
https://doi.org/10.1016/0020-7225(94)90160-0
https://doi.org/10.1098/rsta.1972.0013


P. Bělík et al. 
 

 

DOI: 10.4236/ojfd.2017.74040 620 Open Journal of Fluid Dynamics 
 

of the Atmospheric Sciences, 20, 468-471.  
https://doi.org/10.1175/1520-0469(1963)020<0468:TCWTV>2.0.CO;2 

[21] Fujita, T.T. (1981) Tornadoes and Downbursts in the Context of Generalized Pla-
netary Scales. Journal of the Atmospheric Sciences, 38, 1511-1534.  
https://doi.org/10.1175/1520-0469(1981)038<1511:TADITC>2.0.CO;2 

[22] Fiedler, B.H. and Rotunno, R. (1986) A Theory for the Maximum Windspeed in 
Tornado-Like Vortices. Journal of the Atmospheric Sciences, 43, 2328-2440.  
https://doi.org/10.1175/1520-0469(1986)043<2328:ATOTMW>2.0.CO;2 

[23] Barcilon, A.I. (1967) Vortex Decay Above a Stationary Boundary. Journal of Fluid 
Mechanics, 27, 155-157. https://doi.org/10.1017/S0022112067000114 

[24] Burggraf, O.R. and Foster, M.R. (1977) Continuation or Breakdown in Torna-
do-Like Vortices. Journal of Fluid Mechanics, 80, 685-703.  
https://doi.org/10.1017/S0022112077002420 

[25] Benjamin, T.B. (1962) Theory of the Vortex Breakdown Phenomenon. Journal of 
Fluid Mechanics, 14, 593-629. https://doi.org/10.1017/S0022112062001482 

[26] Landau, L.D. and Lifshitz, E.M. (1958) Statistical Physics. In: Peierls, E. and Peierls, 
R.F., Eds., Course of Theoretical Physics, Vol. 5, Pergamon Press Ltd., Lon-
don-Paris; Addison-Wesley Publishing Company, Inc., Reading. 

[27] Chorin, A.J. and Marsden, J.E. (1993) A Mathematical Introduction to Fluid Dy-
namics. 3rd Edition, Springer-Verlag. 

[28] Xia, J., Lewellen, D.C. and Lewellen, W.S. (2003) Influence of Mach Number on 
Tornado Corner Flow Dynamics. Journal of the Atmospheric Sciences, 60, 
2820-2825. https://doi.org/10.1175/1520-0469(2003)060<2820:IOMNOT>2.0.CO;2 

[29] Klemp, J.B. (1987) Dynamics of Tornadic Thunderstorms. Annual Review of Fluid 
Mechanics, 19, 369-402. https://doi.org/10.1146/annurev.fl.19.010187.002101 

[30] Pouquet, A. and Mininni, P.D. (2010) The Interplay between Helicity and Rotation 
in Turbulence: Implications for Scaling Laws and Small-Scale Dynamics. Philo-
sophical Transactions of the Royal Society A, 368, 1635-1662.  
https://doi.org/10.1098/rsta.2009.0284 

[31] Lim, C. and Nebus, J. (2007) Vorticity, Statistical Mechanics, and Monte Carlo Si-
mulation. Springer-Verlag. https://doi.org/10.1007/978-0-387-49431-9 

[32] Fiedler, B.H. (1997) Compressibility and Windspeed Limits in Tornadoes. Atmos-
phere-Ocean, 35, 93-107. https://doi.org/10.1080/07055900.1997.9649586 

[33] Lewellen, D.C. and Lewellen, W.S. (2007) Near-Surface Intensification of Tornado 
Vortices. Journal of the Atmospheric Sciences, 64, 2176-2194.  
https://doi.org/10.1175/JAS3965.1 

[34] Ward, N.B. (1972) The Exploration of Certain Features of Tornado Dynamics using 
a Laboratory Model. Journal of the Atmospheric Sciences, 29, 1194-1204.  
https://doi.org/10.1175/1520-0469(1972)029<1194:TEOCFO>2.0.CO;2 

[35] Davies-Jones, R.P. (1973) The Dependence of Core Radius on Swirl Ratio in a Tor-
nado Simulator. Journal of the Atmospheric Sciences, 30, 1427-1430.  
https://doi.org/10.1175/1520-0469(1973)030<1427:TDOCRO>2.0.CO;2 

[36] Church, C.R., Snow, J.T. and Agee, E.M. (1977) Tornado Vortex Simulation at 
Purdue University. Bulletin of the American Meteorological Society, 58, 900-908.  
https://doi.org/10.1175/1520-0477(1977)058<0900:TVSAPU>2.0.CO;2 

[37] Burggraf, O.R., Stewartson, K. and Belcher, R. (1971) Boundary Layer Induced by a 
Potential Vortex. Physics of Fluids, 14, 685-703. 

https://doi.org/10.4236/ojfd.2017.74040
https://doi.org/10.1175/1520-0469(1963)020%3C0468:TCWTV%3E2.0.CO;2
https://doi.org/10.1175/1520-0469(1981)038%3C1511:TADITC%3E2.0.CO;2
https://doi.org/10.1175/1520-0469(1986)043%3C2328:ATOTMW%3E2.0.CO;2
https://doi.org/10.1017/S0022112067000114
https://doi.org/10.1017/S0022112077002420
https://doi.org/10.1017/S0022112062001482
https://doi.org/10.1175/1520-0469(2003)060%3C2820:IOMNOT%3E2.0.CO;2
https://doi.org/10.1146/annurev.fl.19.010187.002101
https://doi.org/10.1098/rsta.2009.0284
https://doi.org/10.1007/978-0-387-49431-9
https://doi.org/10.1080/07055900.1997.9649586
https://doi.org/10.1175/JAS3965.1
https://doi.org/10.1175/1520-0469(1972)029%3C1194:TEOCFO%3E2.0.CO;2
https://doi.org/10.1175/1520-0469(1973)030%3C1427:TDOCRO%3E2.0.CO;2
https://doi.org/10.1175/1520-0477(1977)058%3C0900:TVSAPU%3E2.0.CO;2


P. Bělík et al. 
 

 

DOI: 10.4236/ojfd.2017.74040 621 Open Journal of Fluid Dynamics 
 

[38] Lusk, L. (1996) Tornado (3 of 5) (DI00557), Photo by Linda Lusk. University Cor-
poration for Atmospheric Research (UCAR). http://n2t.net/ark:/85065/d7bp00r0  

[39] Garrod, C. (1995) Statistical Mechanics and Thermodynamics. Oxford U. Press. 

[40] Caglioti, E., Lions, P.L., Marchioro, C. and Pulvirenti, M. (1992) A Special Class of 
Stationary Flows for Two-Dimensional Euler Equations: A Statistical Mechanics 
Description. Communications in Mathematical Physics, 143, 501-525.  
https://doi.org/10.1007/BF02099262 

[41] Newton, P.K. (2001) The N-Vortex Problem. Analytical Techniques. Springer-Verlag, 
New York. 

[42] Marchioro, C. and Pulvirenti, M. (1994) Mathematical Theory of Incompressible 
Nonviscous Fluids. In: Antman, S.S., et al., Eds., Applied Mathematical Sciences, 
Vol. 96, Springer, Berlin. 

[43] Majda, A.J. and Bertozzi, A. (2001) Vorticity and Incompressible Flows. Cambridge 
Texts in Applied Mathematics. Cambridge University Press.  
https://doi.org/10.1017/CBO9780511613203 

[44] Fröhlich, J. and Ruelle, D. (1982) Statistical Mechanics of Vortices in an Inviscid 
Two-Dimensional Fluid. Communications in Mathematical Physics, 87, 1-36.  
https://doi.org/10.1007/BF01211054 

[45] Miller, J., Weichman, P.B. and Cross, M.C. (1992) Statistical Mechanics, Euler’s 
Equation, and Jupiter’s Red Spot. Physical Review A, 45, 2328-2359.  
https://doi.org/10.1103/PhysRevA.45.2328 

[46] Chorin, A.J. and Bernard, P. (1973) Discretization of a Vortex Sheet, with an Exam-
ple of Roll-Up. Journal of Computational Physics, 13, 423-429.  
https://doi.org/10.1016/0021-9991(73)90045-4 

[47] Lions, P.-L. and Majda, A. (2000) Equilibrium Statistical Theory for Nearly Parallel 
Vortex Filaments. Communications on Pure and Applied Mathematics, 53, 76-142.  
https://doi.org/10.1002/(SICI)1097-0312(200001)53:1<76::AID-CPA2>3.0.CO;2-L 

[48] Berdichevsky, V.L. (1998) Statistical Mechanics of Vortex Lines. Physical Review E, 
57, 2885-2905. https://doi.org/10.1103/PhysRevE.57.2885 

[49] Berdichevsky, V.L. (2002) On Statistical Mechanics of Vortex Lines. International 
Journal of Engineering Science, 40, 123-129.  
https://doi.org/10.1016/S0020-7225(01)00022-2 

[50] Klein, R., Majda, A.J. and Damodaran, K. (1995) Simplified Equations for the Inte-
raction of Nearly Parallel Vortex Filaments. Journal of Fluid Mechanics, 228, 
201-248. https://doi.org/10.1017/S0022112095001121 

[51] Bluestein, H.B. (2013) Severe Convective Storms and Tornadoes, Observations and 
Dynamics. Springer-Praxis Books in Environmental Sciences. Springer. 

[52] Church, C.R., Snow, J.T., Baker, G.L. and Agee, E.M. (1979) Characteristics of Tor-
nado-Like Vortices as a Function of Swirl Ratio: A Laboratory Investigation. Journal 
of the Atmospheric Sciences, 36, 1755-1776.  
https://doi.org/10.1175/1520-0469(1979)036<1755:COTLVA>2.0.CO;2 

[53] Wurman, J., Kosiba, K. and Robinson, P. (2013) In Situ, Doppler Radar, and Video 
Observations of the Interior Structure of a Tornado and the Wind-Damage Rela-
tionship. Bulletin of the American Meteorological Society, 94, 835-846.  
https://doi.org/10.1175/BAMS-D-12-00114.1 

[54] Lewellen, D.C., Lewellen, W.S. and Xia, J. (2000) The Influence of a Local Swirl Ra-
tio on Tornado Intensification near the Surface. Journal of the Atmospheric 
Sciences, 57, 527-544.  

https://doi.org/10.4236/ojfd.2017.74040
http://n2t.net/ark:/85065/d7bp00r0
https://doi.org/10.1007/BF02099262
https://doi.org/10.1017/CBO9780511613203
https://doi.org/10.1007/BF01211054
https://doi.org/10.1103/PhysRevA.45.2328
https://doi.org/10.1016/0021-9991(73)90045-4
https://doi.org/10.1002/(SICI)1097-0312(200001)53:1%3C76::AID-CPA2%3E3.0.CO;2-L
https://doi.org/10.1103/PhysRevE.57.2885
https://doi.org/10.1016/S0020-7225(01)00022-2
https://doi.org/10.1017/S0022112095001121
https://doi.org/10.1175/1520-0469(1979)036%3C1755:COTLVA%3E2.0.CO;2
https://doi.org/10.1175/BAMS-D-12-00114.1


P. Bělík et al. 
 

 

DOI: 10.4236/ojfd.2017.74040 622 Open Journal of Fluid Dynamics 
 

https://doi.org/10.1175/1520-0469(2000)057<0527:TIOALS>2.0.CO;2 

[55] Grazulis, T.P. (1997) Significant Tornadoes Update 1992-1995. Environmental 
Films, St. Johnsbury. 

[56] NOVA (2004) Hunt for the Supertwister.  
http://www.pbs.org/wgbh/nova/earth/hunt-for-the-supertwister.html  

 
 
 

https://doi.org/10.4236/ojfd.2017.74040
https://doi.org/10.1175/1520-0469(2000)057%3C0527:TIOALS%3E2.0.CO;2
http://www.pbs.org/wgbh/nova/earth/hunt-for-the-supertwister.html

	Applications of a vortex gas models to tornadogenesis and maintenance
	Recommended Citation

	Applications of Vortex Gas Models to Tornadogenesis and Maintenance
	Abstract
	Keywords
	1. Introduction
	2. Background and Suction Vortices
	3. Statistical Mechanics of Vortex Gases  
	4. The Two-Dimensional Point Vortex Theory  
	5. Three-Dimensional Vortex Gas Models 
	5.1. Models with Nearly Parallel Vortices 
	5.2. Models with Folding Vortices 

	6. Entropy and Temperature
	7. Conclusions  
	Acknowledgements
	References

