1,174 research outputs found
Ballistic deposition patterns beneath a growing KPZ interface
We consider a (1+1)-dimensional ballistic deposition process with
next-nearest neighbor interaction, which belongs to the KPZ universality class,
and introduce for this discrete model a variational formulation similar to that
for the randomly forced continuous Burgers equation. This allows to identify
the characteristic structures in the bulk of a growing aggregate ("clusters"
and "crevices") with minimizers and shocks in the Burgers turbulence, and to
introduce a new kind of equipped Airy process for ballistic growth. We dub it
the "hairy Airy process" and investigate its statistics numerically. We also
identify scaling laws that characterize the ballistic deposition patterns in
the bulk: the law of "thinning" of the forest of clusters with increasing
height, the law of transversal fluctuations of cluster boundaries, and the size
distribution of clusters. The corresponding critical exponents are determined
exactly based on the analogy with the Burgers turbulence and simple scaling
considerations.Comment: 10 pages, 5 figures. Minor edits: typo corrected, added explanation
of two acronyms. The text is essentially equivalent to version
A search on Dirac equation
The solutions, in terms of orthogonal polynomials, of Dirac equation with
analytically solvable potentials are investigated within a novel formalism by
transforming the relativistic equation into a Schrodinger like one. Earlier
results are discussed in a unified framework and certain solutions of a large
class of potentials are given.Comment: 9 page
Zipf's law in Multifragmentation
We discuss the meaning of Zipf's law in nuclear multifragmentation. We remark
that Zipf's law is a consequence of a power law fragment size distribution with
exponent . We also recall why the presence of such distribution
is not a reliable signal of a liquid-gas phase transition
New Exactly Solvable Two-Dimensional Quantum Model Not Amenable to Separation of Variables
The supersymmetric intertwining relations with second order supercharges
allow to investigate new two-dimensional model which is not amenable to
standard separation of variables. The corresponding potential being the
two-dimensional generalization of well known one-dimensional P\"oschl-Teller
model is proven to be exactly solvable for arbitrary integer value of parameter
all its bound state energy eigenvalues are found analytically, and the
algorithm for analytical calculation of all wave functions is given. The shape
invariance of the model and its integrability are of essential importance to
obtain these results.Comment: 23 page
Charged particle production in the Pb+Pb system at 158 GeV/c per nucleon
Charged particle multiplicities from high multiplicity central interactions
of 158 GeV/nucleon Pb ions with Pb target nuclei have been measured in the
central and far forward projectile spectator regions using emulsion chambers.
Multiplicities are significantly lower than predicted by Monte Carlo
simulations. We examine the shape of the pseudorapidity distribution and its
dependence on centrality in detail.Comment: 17 pages text plus 12 figures in postscript 12/23/99 -- Add TeX
version of sourc
Interaction of matter-wave gap solitons in optical lattices
We study mobility and interaction of gap solitons in a Bose-Einstein
condensate (BEC) confined by an optical lattice potential. Such localized
wavepackets can exist only in the gaps of the matter-wave band-gap spectrum and
their interaction properties are shown to serve as a measure of discreteness
imposed onto a BEC by the lattice potential. We show that inelastic collisions
of two weakly localized near-the-band-edge gap solitons provide simple and
effective means for generating strongly localized in-gap solitons through
soliton fusion.Comment: 12 pages, 7 figure
Quantum switches and quantum memories for matter-wave lattice solitons
We study the possibility of implementing a quantum switch and a quantum
memory for matter wave lattice solitons by making them interact with
"effective" potentials (barrier/well) corresponding to defects of the optical
lattice. In the case of interaction with an "effective" potential barrier, the
bright lattice soliton experiences an abrupt transition from complete
transmission to complete reflection (quantum switch) for a critical height of
the barrier. The trapping of the soliton in an "effective" potential well and
its release on demand, without loses, shows the feasibility of using the system
as a quantum memory. The inclusion of defects as a way of controlling the
interactions between two solitons is also reported
Modelling stochastic bivariate mortality
Stochastic mortality, i.e. modelling death arrival via a jump process with stochastic intensity, is gaining increasing reputation as a way to represent mortality risk. This paper represents a first attempt to model the mortality risk of couples of individuals, according to the stochastic intensity approach.
On the theoretical side, we extend to couples the Cox processes set up, i.e. the idea that mortality is driven by a jump process whose intensity is itself a stochastic process, proper of a particular generation within each gender. Dependence between the survival times of the members of a couple is captured by an Archimedean copula.
On the calibration side, we fit the joint survival function by calibrating separately the (analytical) copula and the (analytical) margins. First, we select the best fit copula according to the methodology of Wang and Wells (2000) for censored data. Then, we provide a sample-based calibration for the intensity, using a time-homogeneous, non mean-reverting, affine process: this gives the analytical marginal survival functions. Coupling the best fit copula with the calibrated margins we obtain, on a sample generation, a joint survival function which incorporates the stochastic nature of mortality improvements and is far from representing independency.On the contrary, since the best fit copula turns out to be a Nelsen one, dependency is increasing with age and long-term dependence exists
Precise 3D track reconstruction algorithm for the ICARUS T600 liquid argon time projection chamber detector
Liquid Argon Time Projection Chamber (LAr TPC) detectors offer charged
particle imaging capability with remarkable spatial resolution. Precise event
reconstruction procedures are critical in order to fully exploit the potential
of this technology. In this paper we present a new, general approach of
three-dimensional reconstruction for the LAr TPC with a practical application
to track reconstruction. The efficiency of the method is evaluated on a sample
of simulated tracks. We present also the application of the method to the
analysis of real data tracks collected during the ICARUS T600 detector
operation with the CNGS neutrino beam.Comment: Submitted to Advances in High Energy Physic
Dynamical formation and interaction of bright solitary waves and solitons in the collapse of Bose-Einstein condensates with attractive interactions
We model the dynamics of formation of multiple, long-lived, bright solitary
waves in the collapse of Bose-Einstein condensates with attractive interactions
as studied in the experiment of Cornish et al. [Phys. Rev. Lett. 96 (2006)
170401]. Using both mean-field and quantum field simulation techniques, we find
that while a number of separated wave packets form as observed in the
experiment, they do not have a repulsive \pi phase difference that has been
previously inferred. We observe that the inclusion of quantum fluctuations
causes soliton dynamics to be predominantly repulsive in one dimensional
simulations independent of their initial relative phase. However, indicative
three-dimensional simulations do not support this conclusion and in fact show
that quantum noise has a negative impact on bright solitary wave lifetimes.
Finally, we show that condensate oscillations, after the collapse, may serve to
deduce three-body recombination rates, and that the remnant atom number may
still exceed the critical number for collapse for as long as three seconds
independent of the relative phases of the bright solitary waves.Comment: 14 pages, 5 figure
- …
