We study the possibility of implementing a quantum switch and a quantum
memory for matter wave lattice solitons by making them interact with
"effective" potentials (barrier/well) corresponding to defects of the optical
lattice. In the case of interaction with an "effective" potential barrier, the
bright lattice soliton experiences an abrupt transition from complete
transmission to complete reflection (quantum switch) for a critical height of
the barrier. The trapping of the soliton in an "effective" potential well and
its release on demand, without loses, shows the feasibility of using the system
as a quantum memory. The inclusion of defects as a way of controlling the
interactions between two solitons is also reported