680 research outputs found

    Trajectories of microwave prominence eruptions

    Get PDF

    Observations of a rotating macrospicule associated with an X-ray jet

    Full text link
    We attempt to understand the driving mechanism of a macrospicule and its relationship with a coronal jet. We study the dynamics of a macrospicule and an associated coronal jet captured by multi-spacecraft observations. Doppler velocities both in the macrospicule and the coronal jet are determined by EIS and SUMER spectra. Their temporal evolution is studied using X-ray and He II 304 images. A blueshift of -120+/-15 km/s is detected on one side of the macrospicule, while a redshift of 50+/-6 km/s is found at the base of the other side. The inclination angle of the macrospicule inferred from a stereoscopic analysis with STEREO suggests that the measured Doppler velocities can be attributed to a rotating motion of the macrospicule rather than a radial flow or an expansion. The macrospicule is driven by the unfolding motion of a twisted magnetic flux rope, while the associated X-ray jet is a radial outflow.Comment: 4 pages, 3 figures, accepted for publication in A&

    Policy Recommendations for Meeting the Grand Challenge to End Homelessness

    Get PDF
    This brief was created forSocial Innovation for America’s Renewal, a policy conference organized by the Center for Social Development in collaboration with the American Academy of Social Work & Social Welfare, which is leading theGrand Challenges for Social Work initiative to champion social progress. The conference site includes links to speeches, presentations, and a full list of the policy briefs

    Flows in the solar atmosphere due to the eruptions on the 15th July, 2002

    Get PDF
    <p>Which kind of flows are present during flares? Are they compatible with the present understanding of energy release and which model best describes the observations? We analyze successive flare events in order to answer these questions. The flares were observed in the magnetically complex NOAA active region (AR) 10030 on 15 July 2002. One of them is of GOES X-class. The description of these flares and how they relate to the break-out model is presented in Gary & Moore (2004). The Coronal Diagnostic Spectrometer on board SOHO observed this active region for around 14 h. The observed emission lines provided data from the transition region to the corona with a field of view covering more than half of the active region. In this paper we analyse the spatially resolved flows seen in the atmosphere from the preflare to the flare stages. We find evidence for evaporation occurring before the impulsive phase. During the main phase, the ongoing magnetic reconnection is demonstrated by upflows located at the edges of the flare loops (while downflows are found in the flare loops themselves). We also report the impact of a filament eruption on the atmosphere, with flows up to 300 km s<sup>-1</sup> observed at transition-region temperatures in regions well away from the location of the pre-eruptive filament. Our results are consistent with the predictions of the break out model before the impulsive phase of the flare; while, as the flare progresses, the directions of the flows are consistent with flare models invoking evaporation followed by cooling and downward plasma motions in the flare loops.</p&gt

    Flows and Non-thermal Velocities in Solar Active Regions Observed with the Extreme-ultraviolet Imaging Spectrometer on Hinode: A Tracer of Active Region Sources of Heliospheric Magnetic Fields?

    Full text link
    From Doppler velocity maps of active regions constructed from spectra obtained by the Extreme-ultraviolet Imaging Spectrometer (EIS) on the Hinode spacecraft we observe large areas of outflow (20-50 km/s) that can persist for at least a day. These outflows occur in areas of active regions that are faint in coronal spectral lines formed at typical quiet Sun and active region temperatures. The outflows are positively correlated with non-thermal velocities in coronal plasmas. The bulk mass motions and non-thermal velocities are derived from spectral line centroids and line widths, mostly from a strong line of Fe XII at 195.12 Angstroms. The electron temperature of the outflow regions estimated from an Fe XIII to Fe XII line intensity ratio is about 1.2-1.4 MK. The electron density of the outflow regions derived from a density sensitive intensity ratio of Fe XII lines is rather low for an active region. Most regions average around 7E10+8 cm(-3), but there are variations on pixel spatial scales of about a factor of 4. We discuss results in detail for two active regions observed by EIS. Images of active regions in line intensity, line width, and line centroid are obtained by rastering the regions. We also discuss data from the active regions obtained from other orbiting spacecraft that support the conclusions obtained from analysis of the EIS spectra. The locations of the flows in the active regions with respect to the longitudinal photospheric magnetic fields suggest that these regions might be tracers of long loops and/or open magnetic fields that extend into the heliosphere, and thus the flows could possibly contribute significantly to the solar wind.Comment: one tex file, 11 postscript figure file

    EUV emission lines and diagnostics observed with Hinode/EIS

    Full text link
    Quiet Sun and active region spectra from the Hinode/EIS instrument are presented, and the strongest lines from different temperature regions discussed. A list of emission lines recommended to be included in EIS observation studies is presented based on analysis of blending and diagnostic potential using the CHIANTI atomic database. In addition we identify the most useful density diagnostics from the ions covered by EIS.Comment: 14 pages, 3 figures, submitted to PASJ Hinode first results issu

    Propagating waves in polar coronal holes as seen by SUMER and EIS

    Full text link
    To study the dynamics of coronal holes and the role of waves in the acceleration of the solar wind, spectral observations were performed over polar coronal hole regions with the SUMER spectrometer on SoHO and the EIS spectrometer on Hinode. Using these observations, we aim to detect the presence of propagating waves in the corona and to study their properties. The observations analysed here consist of SUMER spectra of the Ne VIII 770 A line (T = 0.6 MK) and EIS slot images in the Fe XII 195 A line (T = 1.3 MK). Using the wavelet technique, we study line radiance oscillations at different heights from the limb in the polar coronal hole regions. We detect the presence of long period oscillations with periods of 10 to 30 min in polar coronal holes. The oscillations have an amplitude of a few percent in radiance and are not detectable in line-of-sight velocity. From the time distance maps we find evidence for propagating velocities from 75 km/s (Ne VIII) to 125 km/s (Fe XII). These velocities are subsonic and roughly in the same ratio as the respective sound speeds. We interpret the observed propagating oscillations in terms of slow magneto-acoustic waves. These waves can be important for the acceleration of the fast solar wind.Comment: 5 pages, 7 figures Accepted as Astronomy and Astrophysics Lette

    A comparison of global magnetic field skeletons and active-region upflows

    Get PDF
    Plasma upflows have been detected in active regions using Doppler velocity maps. The origin and nature of these upflows is not well known with many of their characteristics determined from the examination of single events. In particular, some studies suggest these upflows occur along open field lines and, hence, are linked to sources of the solar wind. To investigate the relationship these upflows may have with the solar wind, and to probe what may be driving them, this paper considers seven active regions observed on the solar disc using the Extreme ultraviolet Imaging Spectrometer aboard Hinode between August 2011 and September 2012. Plasma upflows are observed in all these active regions. The locations of these upflows are compared to the global potential magnetic field extrapolated from the Solar Dynamics Observatory, Helioseismic and Magnetic Imager daily synoptic magnetogram taken on the day the upflows were observed. The structure of the magnetic field is determined by constructing its magnetic skeleton in order to help identify open-field regions and also sites where magnetic reconnection at global features is likely to occur. As a further comparison, measurements of the temperature, density and composition of the plasma are taken from regions with active-region upflows. In most cases the locations of the upflows in the active regions do not correspond to areas of open field, as predicted by a global coronal potential-field model, and therefore these upflows are not always sources of the slow solar wind. The locations of the upflows are, in general, intersected by separatrix surfaces associated with null points located high in the corona; these could be important sites of reconnection with global consequences.PostprintPeer reviewe
    corecore