1,150 research outputs found

    Optimisation of pyrolysis parameters for CF composites with respect to mechanical properties of recovered fibers

    Get PDF
    The aerospace/aeronautics, energy and automotive industries are the primary users of advanced polymer composites in structural components. Increasing number of those components are reaching End of Life and will be disposed in landfills, which is currently the most common option worldwide. However, environmental concerns and consequent demands from society drives industries to search for ways to repurpose decommissioned composite structures. The most beneficial would be to reuse composites and/or their constituents after the service life. Thermal recycling is a method to recover costly fibers and lower the environmental impact. The objective of this work is to optimize conditions of pyrolysis of carbon fiber (CF) composite aiming to recover reinforcement with highest mechanical properties. The specimens for this study were cut (15x30x3mm) from epoxy/CF laminate with randomly oriented fiber. To identify the best conditions, the pyrolysis is performed at different thermal cycles under various environments with mass loss monitored throughout the experiments. The conditions of the reference experiment are based on data from literature (550C for 30 min under nitrogen atmosphere, with oxidation in air for 60 min, see Fig. 1). Additionally, pyrolysis was performed under different temperatures and environments: variation of temperature on first stage, dipping specimens in hot furnace instead of gradual heating, changing conditions of oxidation. In order to select pyrolysis process with most optimal conditions the surface of the recovered fibres is investigated by means of optical microscopy and scanning electron microscopy. The mechanical properties of fibers are evaluated and compared to virgin fibers

    CMS Software Distribution on the LCG and OSG Grids

    Full text link
    The efficient exploitation of worldwide distributed storage and computing resources available in the grids require a robust, transparent and fast deployment of experiment specific software. The approach followed by the CMS experiment at CERN in order to enable Monte-Carlo simulations, data analysis and software development in an international collaboration is presented. The current status and future improvement plans are described.Comment: 4 pages, 1 figure, latex with hyperref

    The identification of TCF1+ progenitor exhausted T cells in THRLBCL may predict a better response to PD-1/PD-L1 blockade

    Get PDF
    T-cell/histiocyte-rich large B-cell lymphoma (THRLBCL) is a rare and aggressive variant of diffuse large B-cell lymphoma (DLBCL) that usually affects young to middle-aged patients, with disseminated disease at presentation. The tumor microenvironment (TME) plays a key role in THRLBCL due to its peculiar cellular composition (< 10% neoplastic B cells interspersed in a cytotoxic T-cell/histiocyte-rich background). A significant percentage of THRLBCL is refractory to rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (RCHOP)-based regimens and to chimeric antigen receptor T-cell therapy; thus, the development of a specific therapeutic approach for these patients represents an unmet clinical need. To better understand the interaction of immune cells in THRLBCL TME and identify more promising therapeutic strategies, we compared the immune gene expression profiles of 12 THRLBCL and 10 DLBCL samples, and further corroborated our findings in an extended in silico set. Gene coexpression network analysis identified the predominant role of the programmed cell death protein 1 (PD-1)/programmed cell death ligand 1 (PD-L1) axis in the modulation of the immune response. Furthermore, the PD-1/PD-L1 activation was flanked by the overexpression of 48 genes related to the functional exhaustion of T cells. Globally, THRLBCL TME was highly interferon-inflamed and severely exhausted. The immune gene profiling findings strongly suggest that THRLBCL may be responsive to anti-PD-1 therapy but also allowed us to take a step forward in understanding THRLBCL TME. Of therapeutic relevance, we validated our results by immunohistochemistry, identifying a subset of TCF1(+) (T cell-specific transcription factor 1, encoded by the TCF7 gene) progenitor exhausted T cells enriched in patients with THRLBCL. This subset of TCF1(+) exhausted T cells correlates with good clinical response to immune checkpoint therapy and may improve prediction of anti-PD-1 response in patients with THRLBCL

    Insights in the genome of mycobacterium avium subsp. paratuberculosis by Next Generation Sequencing approaches

    Get PDF
    Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of paratuberculosis - or Johne's disease \u2013 that affects farmed and wild animals worldwide, causing negative economic consequences particularly relevant in the livestock sector of dairy cattle and beef (1). Recent estimates say that more than 50 % of the herds in Europe and North America are infected (3). In Italy, a study conducted in the Lombardy and Veneto regions reveals that about 70 % of dairy herds are infected (2). The disease shows high variability in the progression and symptoms that may be due to the genetic variability of the host, the pathogen, or a combination of the two. Understanding the mechanism responsible of this variability could be of paramount importance for the control of the disease (1, 3). Aim of this work was to study the genomic variability of MAP isolated from dairy cattle from different farms distributed in several Italian regions through the use of Next Generation Sequencing (NGS) techniques. The preliminary results on 15 strains are presented

    Measurement of the Bs0→J/ψηB_{s}^{0} \rightarrow J/\psi \eta lifetime

    Get PDF
    Using a data set corresponding to an integrated luminosity of 3fb−13 fb^{-1}, collected by the LHCb experiment in pppp collisions at centre-of-mass energies of 7 and 8 TeV, the effective lifetime in the Bs0→J/ψηB^0_s \rightarrow J/\psi \eta decay mode, τeff\tau_{\textrm{eff}}, is measured to be τeff=1.479±0.034 (stat)±0.011 (syst)\tau_{\textrm{eff}} = 1.479 \pm 0.034~\textrm{(stat)} \pm 0.011 ~\textrm{(syst)} ps. Assuming CPCP conservation, τeff\tau_{\textrm{eff}} corresponds to the lifetime of the light Bs0B_s^0 mass eigenstate. This is the first measurement of the effective lifetime in this decay mode.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-017.htm

    Reproducibility of measurements of potential doubling time of tumour cells in the multicentre National Cancer Institute protocol T92-0045

    Get PDF
    We compared the flow cytometric measurement and analysis of the potential doubling time (Tpot) between three centres involved in the National Cancer Institute (NCI) protocol T92-0045. The primary purpose was to understand and minimize the variation within the measurement. A total of 102 specimens were selected at random from patients entered into the trial. Samples were prepared, stained, run and analysed in each centre and a single set of data analysed by all three centres. Analysis of the disc data set revealed that the measurement of labelling index (LI) was robust and reproducible. The estimation of duration of S-phase (Ts) was subject to errors of profile interpretation, particularly DNA ploidy status, and analysis. The LI dominated the variation in Tpot such that the level of final agreement, after removal of outliers and ploidy agreement, reached correlation coefficients of 0.9. The sample data showed poor agreement within each of the components of the measurement. There was some improvement when ploidy was in agreement, but correlation coefficients failed to exceed values of 0.5 for Tpot. The data suggest that observer-associated analysis of Ts and tissue processing and tumour heterogeneity were the major causes of variability in the Tpot measurement. The first two aspects can be standardized and minimized, but heterogeneity will remain a problem with biopsy techniques. © 1999 Cancer Research Campaig

    Model-independent evidence for J/ψpJ/\psi p contributions to Λb0→J/ψpK−\Lambda_b^0\to J/\psi p K^- decays

    Get PDF
    The data sample of Λb0→J/ψpK−\Lambda_b^0\to J/\psi p K^- decays acquired with the LHCb detector from 7 and 8~TeV pppp collisions, corresponding to an integrated luminosity of 3 fb−1^{-1}, is inspected for the presence of J/ψpJ/\psi p or J/ψK−J/\psi K^- contributions with minimal assumptions about K−pK^- p contributions. It is demonstrated at more than 9 standard deviations that Λb0→J/ψpK−\Lambda_b^0\to J/\psi p K^- decays cannot be described with K−pK^- p contributions alone, and that J/ψpJ/\psi p contributions play a dominant role in this incompatibility. These model-independent results support the previously obtained model-dependent evidence for Pc+→J/ψpP_c^+\to J/\psi p charmonium-pentaquark states in the same data sample.Comment: 21 pages, 12 figures (including the supplemental section added at the end

    A guide to writing systematic reviews of rare disease treatments to generate FAIR-compliant datasets: Building a Treatabolome

    Get PDF
    Background: Rare diseases are individually rare but globally affect around 6% of the population, and in over 70% of cases are genetically determined. Their rarity translates into a delayed diagnosis, with 25% of patients waiting 5 to 30 years for one. It is essential to raise awareness of patients and clinicians of existing gene and variant-specific therapeutics at the time of diagnosis to avoid that treatment delays add up to the diagnostic odyssey of rare diseases' patients and their families. Aims: This paper aims to provide guidance and give detailed instructions on how to write homogeneous systematic reviews of rare diseases' treatments in a manner that allows the capture of the results in a computer-accessible form. The published results need to comply with the FAIR guiding principles for scientific data management and stewardship to facilitate the extraction of datasets that are easily transposable into machine-actionable information. The ultimate purpose is the creation of a database of rare disease treatments ("Treatabolome") at gene and variant levels as part of the H2020 research project Solve-RD. Results: Each systematic review follows a written protocol to address one or more rare diseases in which the authors are experts. The bibliographic search strategy requires detailed documentation to allow its replication. Data capture forms should be built to facilitate the filling of a data capture spreadsheet and to record the application of the inclusion and exclusion criteria to each search result. A PRISMA flowchart is required to provide an overview of the processes of search and selection of papers. A separate table condenses the data collected during the Systematic Review, appraised according to their level of evidence. Conclusions: This paper provides a template that includes the instructions for writing FAIR-compliant systematic reviews of rare diseases' treatments that enables the assembly of a Treatabolome database that complement existing diagnostic and management support tools with treatment awareness data

    Study of J /ψ production in Jets

    Get PDF
    The production of J/ψ mesons in jets is studied in the forward region of proton-proton collisions using data collected with the LHCb detector at a center-of-mass energy of 13 TeV. The fraction of the jet transverse momentum carried by the J/ψ meson, z(J/ψ)≡pT(J/ψ)/pT(jet), is measured using jets with pT(jet)>20 GeV in the pseudorapidity range 2.5<η(jet)<4.0. The observed z(J/ψ)distribution for J/ψ mesons produced in b-hadron decays is consistent with expectations. However, the results for prompt J/ψ production do not agree with predictions based on fixed-order nonrelativistic QCD. This is the first measurement of the pT fraction carried by prompt J/ψ mesons in jets at any experiment
    • 

    corecore