201 research outputs found

    The Politics of Service Delivery Reform

    Get PDF
    This article identifies the leaders, the supporters and the resisters of public service reform. It adopts a principal–agent framework, comparing reality with an ‘ideal’ situation in which citizens are the principals over political policy-makers as their agents, and policy-makers are the principals over public service officials as their agents. Reform in most developing countries is complicated by an additional set of external actors — international financial institutions and donors. In practice, international agencies and core government officials usually act as the ‘principals’ in the determination of reforms. The analysis identifies the interests involved in reform, indicating how the balance between them is affected by institutional and sectoral factors. Organizational reforms, particularly in the social sectors, present greater difficulties than first generation economic policy reforms

    Perspectives on weak interactions in complex materials at different length scales

    Get PDF
    Nanocomposite materials consist of nanometer-sized quantum objects such as atoms, molecules, voids or nanoparticles embedded in a host material. These quantum objects can be exploited as a super-structure, which can be designed to create material properties targeted for specific applications. For electromagnetism, such targeted properties include field enhancements around the bandgap of a semiconductor used for solar cells, directional decay in topological insulators, high kinetic inductance in superconducting circuits, and many more. Despite very different application areas, all of these properties are united by the common aim of exploiting collective interaction effects between quantum objects. The literature on the topic spreads over very many different disciplines and scientific communities. In this review, we present a cross-disciplinary overview of different approaches for the creation, analysis and theoretical description of nanocomposites with applications related to electromagnetic properties

    FAK acts as a suppressor of RTK-MAP kinase signalling in Drosophila melanogaster epithelia and human cancer cells

    Get PDF
    Receptor Tyrosine Kinases (RTKs) and Focal Adhesion Kinase (FAK) regulate multiple signalling pathways, including mitogen-activated protein (MAP) kinase pathway. FAK interacts with several RTKs but little is known about how FAK regulates their downstream signalling. Here we investigated how FAK regulates signalling resulting from the overexpression of the RTKs RET and EGFR. FAK suppressed RTKs signalling in Drosophila melanogaster epithelia by impairing MAPK pathway. This regulation was also observed in MDA-MB-231 human breast cancer cells, suggesting it is a conserved phenomenon in humans. Mechanistically, FAK reduced receptor recycling into the plasma membrane, which resulted in lower MAPK activation. Conversely, increasing the membrane pool of the receptor increased MAPK pathway signalling. FAK is widely considered as a therapeutic target in cancer biology; however, it also has tumour suppressor properties in some contexts. Therefore, the FAK-mediated negative regulation of RTK/MAPK signalling described here may have potential implications in the designing of therapy strategies for RTK-driven tumours

    Low adherent cancer cell subpopulations are enriched in tumorigenic and metastatic epithelial-to-mesenchymal transition-induced cancer stem-like cells

    Get PDF
    Cancer stem cells are responsible for tumor progression, metastasis, therapy resistance and cancer recurrence, doing their identification and isolation of special relevance. Here we show that low adherent breast and colon cancer cells subpopulations have stem-like properties. Our results demonstrate that trypsin-sensitive (TS) breast and colon cancer cells subpopulations show increased ALDH activity, higher ability to exclude Hoechst 33342, enlarged proportion of cells with a cancer stem-like cell phenotype and are enriched in sphere- and colony-forming cells in vitro. Further studies in MDA-MB-231 breast cancer cells reveal that TS subpopulation expresses higher levels of SLUG, SNAIL, VIMENTIN and N-CADHERIN while show a lack of expression of E-CADHERIN and CLAUDIN, being this profile characteristic of the epithelial-to-mesenchymal transition (EMT). The TS subpopulation shows CXCL10, BMI-1 and OCT4 upregulation, differing also in the expression of several miRNAs involved in EMT and/or cell self-renewal such as miR-34a-5p, miR-34c-5p, miR-21-5p, miR-93-5p and miR-100-5p. Furthermore, in vivo studies in immunocompromised mice demonstrate that MDA-MB-231 TS cells form more and bigger xenograft tumors with shorter latency and have higher metastatic potential. In conclusion, this work presents a new, non-aggressive, easy, inexpensive and reproducible methodology to isolate prospectively cancer stem-like cells for subsequent biological and preclinical studies.Ministry of Economy and Competitiveness, Instituto de Salud Carlos III (FEDER funds) PI10/02295 PI10/02149Fundacion Progreso y Salud, Consejeria de Salud, Junta de Andalucia (Ministry of Health, Government of Andalucia) PI-0533-2014Consejeria Economia, Innovacion, Ciencia y Empleo, Junta de Andalucia (Ministry of Economy, Innovation, Science and Employment, Government of Andalucia) CTS-656

    Differential Impact of EGFR-Targeted Therapies on Hypoxia Responses: Implications for Treatment Sensitivity in Triple-Negative Metastatic Breast Cancer

    Get PDF
    In solid tumors, such as breast cancer, cells are exposed to hypoxia. Cancer cells adapt their metabolism by activating hypoxia-inducible factors (HIFs) that promote the transcription of genes involved in processes such as cell survival, drug resistance and metastasis. HIF-1 is also induced in an oxygen-independent manner through the activation of epidermal growth factor receptor tyrosine kinase (EGFR-TK). Triple-negative breast cancer (TNBC) is a subtype of invasive breast cancer characterized by negative expression of hormonal and HER2 receptors, and this subtype generally overexpresses EGFR. Sensitivity to three EGFR inhibitors (cetuximab, gefitinib and lapatinib, an HER2/EGFR-TK inhibitor) was evaluated in a metastatic TNBC cell model (MDA-MB-231), and the impact of these drugs on the activity and stability of HIF was assessed.MDA-MB-231 cells were genetically modified to stably express an enhanced green fluorescent protein (EGFP) induced by hypoxia; the Ca9-GFP cell model reports HIF activity, whereas GFP-P564 reports HIF stability. The reporter signal was monitored by flow cytometry. HIF-1 DNA-binding activity, cell migration and viability were also evaluated in response to EGFR inhibitors. Cell fluorescence signals strongly increased under hypoxic conditions (> 30-fold). Cetuximab and lapatinib did not affect the signal induced by hypoxia, whereas gefitinib sharply reduced its intensity in both cell models and also diminished HIF-1 alpha levels and HIF-1 DNA-binding activity in MDA-MB-231 cells. This gefitinib feature was associated with its ability to inhibit MDA-MB-231 cell migration and to induce cell mortality in a dose-dependent manner. Cetuximab and lapatinib had no effect on cell migration or cell viability.Resistance to cetuximab and lapatinib and sensitivity to gefitinib were associated with their ability to modulate HIF activity and stability. In conclusion, downregulation of HIF-1 through EGFR signaling seems to be required for the induction of a positive response to EGFR-targeted therapies in TNBC

    Preparation of Active Proteins, Vaccines and Pharmaceuticals as Fine Powders using Supercritical or Near-Critical Fluids

    Get PDF
    Supercritical or near-critical fluid processes for generating microparticles have enjoyed considerable attention in the past decade or so, with good success for substances soluble in supercritical fluids or organic solvents. In this review, we survey their application to the production of protein particles. A recently developed process known as CO2-assisted nebulization with a Bubble Dryer® (CAN-BD) has been demonstrated to have broad applicability to small-molecule as well as macromolecule substances (including therapeutic proteins). The principles of CAN-BD are discussed as well as the stabilization, micronization and drying of a wide variety of materials. More detailed case studies are presented for three proteins, two of which are of therapeutic interest: anti-CD4 antibody (rheumatoid arthritis), α1-antitrypsin (cystic fibrosis and emphysema), and trypsinogen (a model enzyme). Dry powders were formed in which stability and activity are maintained and which are fine enough to be inhaled and reach the deep lung. Enhancement of apparent activity after CAN-BD processing was also observed in some formulation and processing conditions

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine

    Get PDF
    [This corrects the article DOI: 10.1186/s13054-016-1208-6.]
    corecore